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Abstract

Simulating composite bodies made of many point particles is computationally demanding due to the vast
amount of degrees of freedom. By using a data-driven approach of neural ordinary differential equations
(neural ODEs), we show an alternative to learning coarse-grained (CG) machine learning (ML) potentials
that reduces the number of simulated degrees of freedom. By construction, we reduce the representation
of composite bodies only to their orientation and position of their centres of mass. In the thesis, we
gradually build on toy problems: first, we employ neural ODEs in Hamiltonian Monte Carlo sampling of
thermodynamic averages; secondly, we confirm that neural ODEs can be used to learn pair-wise potentials
without losing the ability to be scalable to multiple pair interactions; and lastly, we develop the backbone for
an automated coarse-grainer for any composite body, regardless of its shape or surface complexity. Further
work aims to develop this method forward, building a complete pipeline that generates training data, learns
the CG potential and runs the reduced representation dynamics.
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1 Introduction

1.1 Historical Context

The methods of artificial intelligence (AI) have been in development for almost a century now. Ever since
the invention of the perceptron in 1950s [1], neural networks (NNs) have been incrementally applied to more
and more tasks. After the breakthrough of AlexNet in 2012 [2], large deep neural networks have surged5

in popularity in many disciplines, primarily focusing on the advancement of computer vision and natural
language processing. Nevertheless, there is an ongoing adoption of these techniques in the scientific domain
as well. For instance, the recent success of DeepMind’s AlphaFold protein folding solution [3], or their
contribution towards approximating functionals in density functional theory (DFT) [4], show that these
novel, general approach methods can aid in accelerating scientific discovery (depicted in Figure 1).10

Figure 1: a) i) The performance of DeepMind’s AlphaFold on the CASP14 dataset relative to the other top-15
entries (out of 146 entries) ii) Correct domain packing predicted by AlphaFold of the CASP target T1044 (PDB
6VR4) (adapted from [4]). b) Superior performance of DeepMind 21 DFT functional benchmarked on each class of
reactions from GMTKN55 database. MoM is the mean of the mean absolute error for each subbenchmark. c) Diagram
of the hierarchy of terms relating artificial intelligence, machine learning and deep learning together with some examples
of deep learning methods.

Molecular dynamics (MD) and Monte Carlo (MC) simulations attempt to understand material properties
by running computer simulations based on fundamental physical principles. By employing the ideas from
statistical mechanics, MD simulations aim to hasten material discovery as well as help understand underlying
phenomena that might not be observable within an experimental setup. The ongoing improvements in
computational power stimulate the capability of simulations, as larger and more complex systems can be15

simulated faster. These techniques have been successful across a wide range of problems in condensed
matter physics or biophysics such as conformational changes, folding, and binding, furthering to bridge
the gap between theory and experiment [5]. The main limitation arises from calculating time-consuming
force fields from interatomic potentials between interacting particles that are often tabulated and require
a fair deal of manual fine-tuning [6]. Moreover, as the scientific community is motivated to investigate20

more complex systems, traditional computational techniques lag behind the experimental community. For
instance, systems such as DNA nanostars [7] have been investigated experimentally, yet their complex shape
and many interaction sites make them difficult to be studied in silico.

Since 1980s, when the first interatomic potentials were being introduced [8], there have been efforts to
improve both the accuracy and the computation speed. Machine learning (ML) potentials have entered25

the world of computational materials science as a way of constructing data-driven numerical interpolations
of the fundamental quantum-mechanical interactions generated from ab initio DFT calculations [9]. Their
ability to provide potentials of DFT accuracy at a reduced computational cost has proved a step in the right
direction towards more accurate MD simulations [10]. Therefore, data-driven discovery definitely plays
a crucial role in future scientific endeavours, which has also been referred to as the fourth paradigm of30

scientific discovery [11]. After the first three paradigms - empirical experimentation, analytical derivation
and computational investigation - data science is hence bringing in powerful tools to aid in the scientific
effort. Therefore, by providing data generated from fundamental methods, trainable models aim to capture
the underlying laws in an efficient solution.

3



1 Introduction

1.2 The Project35

The goal of MD and MC simulations is to sample thermodynamic averages of microstates so that one can
predict macroscopic observable variables of materials through computation only. To create such MD or
MC trajectories, one has to evaluate potential energy functions, or forces, between interacting particles.
Systems with more complex rigid bodies can be represented by composite bodies made of many point
particles. Due to the high number of pair interactions between these point particles, the computation times40

increase enormously with increasing number of bodies, or increasing complexity of their shape and surface.
Nevertheless, the configurational state of such composite bodies can still be sufficiently described only by
the theoretical minimum number of degrees of freedom: the position of the centre of mass and the body’s
orientation. These composite bodies can then be simulated by a coarse-grained (CG) pair potential as a
function of these degrees of freedom only. Such a potential has no obvious analytical form, hence data-driven45

ML techniques must be employed.
We aim to use neural ordinary differential equations (neural ODEs) to learn these CG potentials from MD

trajectories. By generating all-particle trajectories of the composite body, we aim to create an automated
pipeline that learns the CG potential. By reducing the required number of degrees of freedom, the ambition
is to improve the computational scalibility of rigid body simulations with this reduced representation.50

This thesis has an unusual structure, where we divide the project into three parts that incrementally
build towards the project’s final goal. After reviewing the literature and providing the basics of deep learning
and neural ODEs, we present each project’s part with their own method and results sections. Firstly, we
use neural ODEs within a Hamiltonian Monte Carlo (HMC) simulation to sample toy potentials. Our aim
is to show that neural ODEs can be used to learn ML potentials and that they can be used within HMC55

to sample thermodynamic averages. Secondly, we use neural ODEs to learn a pair-wise ML potential in a
diatomic molecule. Afterwards, we employ this potential to simulate a triatomic molecule. Our aim is to
show the feasibility of using pair-wise ML potentials learned with neural ODEs in simulations of more than
one pair of interacting particles. Thirdly, we use neural ODEs to learn a CG potential on a short trajectory
between two simple composite bodies. Our aim is to confirm the feasibility of learning CG potentials with60

neural ODEs. We also give the background to rigid body kinetics, highlighting our own implementation of
integrating such dynamics. We combine the discussion of all parts together, giving the overall contextual
significance of all the thesis’ results.

1.3 Preliminary Notes

Hardware & Software65

The project has been run as a collaboration between Dr. Rafael Góomez-Bombarelli’s research group
at Massachussets Institute of Technology (MIT) and Dr. Stefano Angioletti-Uberti’s research group at
Imperial College London. Training and simulations were performed on a variety of hardware, but the final
results come from the SoftNanoLab workstation and the High Performance Computing (HPC) facilities
at Imperial College London. The first two parts of the thesis have their code on the Github repository70

jakublala/md-neural-ode. The final part is in the repository jakublala/coarsegrained-md-neural-ode.
Software used primarily includes Python with PyTorch, and LAMMPS with OVITO.

Notation and Units

The notation is consistent throughout all parts. Capitalised, bold notation refers to matrices (e.g. X)
consisting of vectors (e.g. x). Vectors here refer to a representation of a multi-dimensional data point. The75

components of these vectors are given as scalars with a subscript (e.g. xi). Nevertheless, subscripts are also
used with the bold vector notation to describe the value for a specific particle in a system or a specific time
step in a series. Any exceptions are clearly highlighted. As an example, positions of all particles is given by
X, where the position of a single particle i is given by xi. If we then consider the individual components of
xi, we omit the particle’s index and rather give the component’s index as xi, i.e. xi = [x1, x2, x3].80

The simulations throughout use a system of reduced units. These are denoted by a special variable
with a unit subscript (e.g. σunit and ϵunit are the units of reduced distance and energy respectively). The
definitions of these units are given in figure captions, where the relevant variable appears.
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2 Literature Review

2.1 Neural Ordinary Differential Equations85

Deep learning is a subfield of machine learning that uses neural networks to create predictive models. After
Rosenblatt’s invention of the brain-inspired computing unit of NNs called the perceptron [1], it took several
decades of research, two AI winters and immense improvements in computational capabilities for NNs to
become the mainstream way too construct models. The key research developments were, for instance, the
extension to multilayer perceptron networks and deeper neural nets, automatic differentiation, efficient GPU90

acceleration, or the invention of various NN architectures such as convolutional neural nets, transformers,
or graph neural networks.

Neural ODEs are a very recent addition to the family of deep neural network models [12] and have
since been applied and advanced to many different areas of AI research. By extending the idea of discrete
recurrent neural networks (RNNs), they utilize the well-established adjoint sensitivity method [13] which95

has been successful in meteorology for several decades [14]. In terms of modelling time-series phenomena,
the parameterized neural ODE gives the change (first derivative) in time rather than outputting a state at
a new time. The details of the origin of neural ODEs, the adjoint method as well as the basics of neural
networks are explained in Section 3.

Advantages100

The advantages of neural ODEs are primarily memory efficiency, adaptive computation and continuous
time-series modelling. Deeper NNs posses greater predictive powers as they can model more complex rela-
tionships. Nevertheless, during the predictive forward pass through the net, one has to store the intermediate
quantities to be able to compute the gradients in the backward pass during training. Hence, a major bot-
tleneck of deeper models is running out of memory [15]. By using the adjoint method, one does not need105

to store the intermediate quantities and can thus achieve a constant memory cost as a function of depth.
However, this is sometimes at the cost of longer computation times. More than 100 years of the development
of efficient and accurate ODE solvers also allows to adapt the trade-off between speed and accuracy of the
predictive neural ODE. Lastly, compared to the more traditional RNNs, the input data no longer has to
consist of discrete observations with specific intervals, but continuously-defined dynamics can naturally be110

used with arbitrary time steps to train a neural ODE.

Applications

The breakthrough paper by Chen et al. [12] benchmarks performance of neural ODEs on the well-established
MNIST dataset for digit recognition [16]. They compare it with a residual neural network (ResNet, which is
similar to RNNs) and a neural ODE where the gradients are backpropagated directly through the integrator115

without using the adjoint method (RK-Net). They show that the memory costs scales as O(1) for neural
ODEs compared to the ResNet, which scales with the number of layers, and the RK-Net, which scales with
the number of evaluations in the ODE solver. The paper’s authors also implemented the adjoint method
into the PyTorch automatic differentiation module in the torchdiffeq [17] package that will form the code
basis further in the project.120

Further research of neural ODEs has currently branched out into enhancing the method and applying
it to real problems. Advancements such as incorporating stochasticity into neural ODEs [18] or the ability
to learn on irregular time-series data [19] made neural ODEs useful in economic modelling [20] as well as
forecasting disease outbreaks [21] [22]. Success has been also been shown in transient modelling of electronic
circuits [23]. As first-order ordinary differential equations are common in physics-based dynamical processes125

and neural ODEs are proposed to parameterize Hamiltonians [24], it is only a matter of applying this method
to appropriate problems to enhance data-driven scientific discovery. For instance, Zhong et al. [25] have
used neural ODEs to learn Hamiltonian dynamics with control. They consider physically-consistent models
to control the pendulum, the CartPole and the Acrobot from OpenAI Gym [26], an open-source toolkit with
toy problems and environments for reinforcement learning.130

We can observe a gradual adoption of neural ODEs among the computational sciences. For example,
Lee at al. [27] have proposed a parameterized extension to neural ODEs to learn multiple dynamics spec-
ified by an input parameter instance. Their work demonstrates the effectiveness in computational fluid
dynamic problems, more specifically in one-dimensional inviscid flow modelled by the Burgers’ equation,
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2 Literature Review

two-dimensional chemically reacting flow, quasi-one-dimensional inviscid compressible flow expressed by the135

Euler equation and shallow water equations.

However, the materials science community has yet to fully appreciate this method, as there are only a
handful of papers applying neural ODEs to materials phenomena. For instance, Chen et al. [28] predict the
outcomes of spintronic experiments, or Zhang et al. [29] demonstrate the potential of learning dynamics in
chemical kinetics and combustion modelling.140

The most related work comes from Wang et al. [30], where they apply control theory to molecular
simulations. They specifically show it is possible to bias molecular dynamics of simulations towards a target
state by a set of macroscopic observables on an example of a 3D polymer folding into a helix. Although the
control Hamiltonian dynamics they learn are not physical as the target helical fold has no physical origin,
they are the first ones to apply neural ODEs to molecular dynamics. Their PyTorch implementation diffMD145

has served as the basis for our work. Compared to the original torchdiffeq package, diffMD uses the
symplectic Velocity-Verlet integrator instead of the Runge-Kutta solver [31], which becomes crucial for MD
simulations as explained in Section 4.1.

2.2 Coarse-Grained Molecular Simulations

Molecular Dynamics and Hamiltonian Monte Carlo150

MD simulations are used to simulate the dynamics of nanoscale systems to predict macroscopic properties.
As they obtain system configurations by integrating differential equations of motion, the timescales stud-
ied are restricted by the limits of the employed integrator. Therefore, to simulate phenomena at longer
timescales often observed in conformational transitions in biophysics, one has to use a longer time step in
the integrator that may then deviate the trajectory from the ergodic ensemble that ensures sampling the155

correct thermodynamic average for the macroscopic observable [32]. Hamiltonian Monte Carlo (HMC), or
Hybrid Monte Carlo, is a combination of MD with MC that takes a correction MC step that keeps the
system in the correct statistical ensemble. An alternative view is that the proposal step in the MC Markov
chain uses MD for the proposal of the next configuration.

HMC was developed in the 1980s [33] and has recently become popular within the applied statistics160

community [34]. Betancourt [35] goes into detail about the efficiency of HMC to sample target distributions
by exploiting the geometrical information about their surface. MC inefficiency comes from redundantly
computing proposal steps for the next system configuration that is then rejected and not used as a sample.
By exploiting the geometry of the target distribution, HMC aims to propose states that are more likely to be
accepted, whilst still sampling enough of the phase space for a useful macroscopic average. Computational165

superiority of HMC over both MD and MC has been shown in a large-scale simulation of a BaTiO3 phase
transition [36]. A related hybrid MC/MD approach in simulating bond scission of proteins also shows the
power of combining the two methods [37].

We aim to use HMC to help us alleviate the inaccuracies that might arise when integrating neural
ODEs. Although inaccuracy comes with all integrators [38], NN-based solutions are often prone to exploding170

singularities which would be detrimental in our application. By employing the MC correction step, we can
ensure the system’s energy does not explode and correct ergodic sampling is achieved. The alternate and
equally useful perspective is that we use neural ODEs in HMC for the proposal step. There was no work
found on the use of neural ODEs to evolve the dynamics in HMC.

Machine Learning Potentials175

The interactions between the particles within the system are governed by parameterized pair-wise interatomic
potentials. First derivatives of these energy landscapes define the force fields used to propagate the system
forward in time. There are many ways to define such a potential. Classical potentials, such as the Lennard-
Jones potential, exhibit cheap O(n) computational complexity and provide long timescales capabilities, but
are fairly inaccurate as they are only empirical and their coefficients are weakly fine-tuned. More advanced180

potentials provide better accuracy at the cost of computation time. Semi-empirical methods based on
Hartree-Fock formalism blend empirical and quantum mechanical data, but they scale as O(n2). DFT-
based potentials then scale as O(n3) and post-Hartree-Fock methods, or self-consistent method, scale as
O(n7), which starts to limit the system sizes that would be feasible to simulate in a reasonable amount of
time [39]. To avoid the expensive computation of the Schrödinger’s equation in DFT, ML potentials aim to185

provide a data-driven approximation of these expensive methods at the fraction of the cost. Note that our
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2.2 Coarse-Grained Molecular Simulations

work does not utilise DFT calculations as the fundamental ground truth that is being modelled. We rather
use MD simulations to be the ground truth, where we aim to find a potential as a function of a coarser
representation.

Using NNs as function approximators of interatomic potentials has been used for more than a decade190

now [40] [41] [42]. Behler-Parinello NNs from 2007 aim to learn free energy landscapes by training on DFT
data whilst incorporating all of the relevant physical principles [43]. This is a notable difference from deep
learning applications in computer vision or natural language processing tasks, where NNs are free to learn
underlying patterns in data without many hard-coded laws or inductive biases. Therefore, in the natural
sciences, it is useful to utilize the long history of physics research to restrict the possible predictions to the195

physically relevant ones [44]. A well established success has been shown with a deep convolutional neural
network in the SchNet architecture [45]. Both have reached highly competitive prediction accuracies in
terms of chemical compound space as well as configuration space. Their scalibility to large datasets shows a
promising future towards extracting novel insights through data-driven discovery. State-of-the-art progress
has been made in efforts such as Allegro [46] or NequIP [47].200

These NNs are usually trained by either an energy- or a force-matching approach [48]. In energy-matching,
the training datasets include atomic configurations as inputs and the associated energies as labels. In force-
matching, the labels are then the forces on the atoms. In the latter, an additional gradient layer must
thus be incorporated to propagate the training optimization from the matched force into the ML potential
[49]. In Figure 2, we show our framework of evolving the system’s dynamics to learn the potential energy205

landscape. The key difference is that we are neither matching the energies, nor the forces. We are rather
learning the ML potential that, given the time for the system to evolve, would produce the target trajectory
from our training dataset. This is the crucial, unconventional idea that has not yet been investigated in the
current literature.

Figure 2: Comparison between the force-matching approach in CGNet by Wang et al. [49] and our trajectory based
approach of learning ML potentials. a) Neural network scheme of CGNet, where atomic configurations x are fed into
a neural network, the output gives the free energy and the gradient of the energy gives the force acting on the atoms,
which is compared to the labels of the dataset (adapted from [44]) b) Our neural network scheme, where an initial
system state is fed into an iterative integrator, where a neural network (black) takes in a state, outputs the change in
time and is then integrated using an ODE solver. This produces a trajectory for n time steps, which is then compared
to the trajectories from the training dataset. A detailed description of the inner components of the black-box neural
ODE is given in Figs. 8 and 15 for translational and rotational dynamics respectively.

In terms of implementation, there are several Python libraries such as torchMD [50] or JAXMD [51] that210

provide end-to-end differentiable MD pipelines for learning ML potentials. Wang’s mdgrad extends torchMD
with the functionality of diffMD but has been not been developed for almost 2 years. Hence, we are going
to be using diffMD that is effectively equivalent to mdgrad and is available only internally on the MIT
Enterprise GitHub. Moreover, some packages such as REANN [29] can interface with the popular, efficient
and easy-to-use open-source MD software LAMPS [52]. As we deem LAMMPS’s computational efficiency and215

community adoption [53] as important, the aim is to create an automated coarse-graining pipeline that is
compatible with this powerful MD software. Packages in LAMMPS such as ML-IAP or ML-SNAP are essential
interfaces to do just that.
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2 Literature Review

Coarse-Graining

Coarse-graining (CG) is the process of representing a thermodynamic system in a coarser set of variables.220

For instance, a protein backbone or DNA could be modelled as a chain of beads that have lower than
atomistic resolution [54] [55] [56]. The goal is thus to define a CG potential as a function of the coarse-
grained variables that closely matches the original free energy landscape, hence preserving as much of the
physical properties as possible. Traditional approaches involve manual fine-tuning to capture multi-scale
interactions [57], which by construction often leads to information loss at the trade-off of improved efficiency225

[58]. Systems with complicated shapes, surface charges and interaction sites can often be computationally
demanding hence coarse-graining the system becomes necessary for any meaningful ensemble sampling. For
instance, DNA nanostars [7] are usually simulated with the oxDNA package [59], where the DNA backbone
is treated as a string of rigid nucleotides that interact only through a potential based on the position and
orientation of the nucleotides.230

The aforementioned CGNets, introduced by Wang et al. [49], provide a better approximation than
functional forms of CG potentials, as CGnets automatically include multibody effects and nonlinearities.
They provide evidence of accurate approximations for alanine dipeptide and chignolin folding/unfolding in
water. Other attempts at coarse-graining involve transforming high-dimensional configurations into low-
dimensional embeddings via autoencoders [60] [61], VAMPnets [62], graph NNs [63] or kernels [64]. All of235

these show promising future for using ML as automated, data-driven CG models.
Most related work to our project comes from Greener et al. [65], where they use a NN to parameterize

a physics-informed three-component CG force field of proteins. Firstly, they constrain the CG potential
into a functional form of a pair-wise distance, bond angle and torsion angle components. Although these
are well-established types of potentials for protein simulations, the approach underutilises the ability of240

NNs to capture interactions outside of these three pre-defined contributions. Secondly, their method does
not use neural ODEs and hence their forward propagation through the RNN has large memory costs as all
intermediate computations have to be stored. This limits the amount of time steps taken forward in time
during training. We aim to address both of these limitations.

2.3 Summary245

Neural ODEs introduce a fresh perspective of applying NNs to learning dynamical systems. Its use has,
however, yet to be fully appreciated by the materials science research community. As natural phenomena are
known to obey first-order ODEs, it is only a matter of time once neural ODEs will be become more popular
within the community. Compared to conventional ML potentials, the data-driven optimization is performed
on dynamical trajectories rather than structure-energy pairs. This makes them the ideal candidates to learn250

effective potentials as a function of coarse-grained variables from MD trajectories. Figure 3 sums up our
intended application. Successfully applying neural ODEs to learn CG potentials of composite rigid bodies
might not only deliver a superior method towards defining CG potentials, but it might also help introduce this
novel technique to the MD community. Nevertheless, it is clear that neural ODEs trade in low memory cost
at the expense of higher computation times, hence it might still require further computational optimization255

advancements before they will be able to compete with some of the more traditional methods.

Figure 3: Schematic diagram of the automated coarse-graining pipeline.
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3 Theory of Neural ODEs

Neural Networks

A neural network is a system of simple computing neurons organised in successive layers that can theo-
retically approximate any function f(X) [66]. Figure 4a shows a perceptron j at depth d in a neural net.260

Each neuron sums up the result of multiplying the inputs σd−1
i with some weights wd

ij , adds in some bias bdj
(Eq. 1), runs the result through an activation function σdj (a

d
j ), and then sends the result σdj to the neurons

in the next layer. Indices i and j denote the position of the neurons within each layer. Each neuron is thus
parametrized by bdj and each neuron connection is parametrized by wd

ij . Therefore, the NN can be described
as a function approximator f(X, θ), where θ encapsulates all the weights and biases.265

aj =
∑
i

wd
ijσ

d−1
i + bdj (1)

Figure 4: a) Schematic diagram of a single neuron inside a neural network. It takes in values from the previous layer
σd−1
i , multiplying them with their respective weights wd

ij , summing them up, adding a bias bdj and then running them

through an activation function σd
j . The result is then sent to the next layer. b) Examples of four activation functions

for σ(a).

To optimize θ, the backpropagation algorithm is used. To learn our parameters in a supervised training
scheme, we need to have a labelled dataset. That is, we need a corresponding set of the input-output pairs
{X,Y}, where X and Y are matrices build from individual input (feature) and label (target) data points
respectively. If our NN has a prediction f(X, θ) = Ŷ, then we can define a loss function L(Y, Ŷ), which270

captures the difference of our predicted output to the true label. As we want to minimize L(Y, Ŷ), we can
update θ by gradient descent optimization (Eq. 2). To find the gradients with respect to the parameters,
we need to backpropagate the gradients through the network. This is done by essentially applying the chain
rule backwards through the computation graph of the NN. An example of this is given in Appendix A.1.

Gradient descent is then performed by a step size η, also known as the learning rate, that determines
the amount of how much we want to update the parameters based on the computed gradient of the loss.
We update θ for a fixed number of epochs, or until the gradients become sufficiently small.

wd
ij → wd

ij − η
dL

dwd
ij

bdi → bdi − η
dL

dbdi
(2)

To utilize the enhancing power of graphic cards, all of the above math operations may be re-written as275

matrix operations that can be easily parallelized on GPUs, taking full advantage of their computational
capacity. Moreover, instead of optimizing θ by passing in a single data point through the neural network
at a time, we might parallelize the evaluation through the network as well by sending in multiple inputs
at once. This is called batching. Determining the batch size also affects the training performance and the
model’s accuracy.280

As increasing the size of the NNs greatly improves their ability to approximate complicated functions,
these models are very prone to overfitting on the training dataset {Xtrain,Ytrain}. Therefore, a test dataset
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3 Theory of Neural ODEs

{Xtest,Ytest} is used during learning that ensures f(X, θ) performs well even on never-seen data. A sep-
arate validation dataset {Xvalidation,Yvalidation} is then used for the evaluation metric for hyperparameter
tuning. For instance, important hyperparameters is the depth and the width of the NN, the learning rate,285

or the number of training epochs. One would perform at least a grid search to find a reasonable set of
hyperparameters, although more robust approaches may be used such Bayesian optimization [67] or genetic
algorithms [68]. We use SigOpt [69] as a black-box that performs intelligent optimization and finds hyper-
parameters that perform relatively well. The model’s performance is then thus evaluated by L(Ytest, Ŷtest).
Also, one needs to consider weight and bias initialization for the network to achieve stable and efficient290

training. We use Glorot initilization [70], where initial parameters are sampled from a small Gaussian dis-
tribution centered around zero. The reasoning is that such parameters describe a system with no dynamics,
which is assumed to be better for the model to start learning from. If we would initialize the model with
some unrelated random dynamics, the model might find it harder to re-learn [71].

PyTorch Library295

Thankfully, all of the theoretical background has already been implemented in various Python deep learning
frameworks such as TensorFlow [72], JAX [73] or PyTorch [74]. All of these are effectively equivalent and
only vary in the way the programmer interacts with the network and the way the computation graphs are
created, stored and evaluated. This project uses PyTorch for all its parts.

In terms of the update rule, there are various optimizers implemented in PyTorch, where each uses a300

different approach to estimate the topology of the objective function L(Y, f(X, θ)) as a function of θ. We
use the common Adam optimizer, which is a first-order gradient-based optimization algorithm of stochastic
objective functions that adapts its learning rate, penalizing the learning rates for parameters that are
updated frequently and increasing the learning rates of those that are not [75]. As these adaptive learning
rate algorithms vary in performance based on the specific task, we use LambdaLR scheduler (see Appendix305

A.2) to periodically decrease the learning rate after some number of epochs. Note that the scheduling
hyperparameters should not have much effect on training, as Adam is already an adaptive learning rate
algorithm, hence the scheduler only imposes an upper bound on the learning rate. That helps as the
parameters θ approach the minimum of the loss function L(Y, f(X, θ)) and the updates should hence be
smaller so as to not overshoot the local minimum.310

Reccurent Neural Networks

To model time-series data, it is useful to consider that the network provides a discrete update of some hidden
state variables Z. Therefore, instead of transforming our inputs X to outputs Y, we iteratively change Z by
feeding Zt into successive computation units, where Zt is a sum of the output from the previous computation
f(Zt−1, θt−1) as well as its input Zt−1. To achieve generalised dynamics, we compute all time steps by the315

same NN with the same parameters θ, which is then called a recurrent neural network.
These discrete, successive operations thus compose a sequence of transformations to a hidden state

Zt+1 = Zt + f(zt, θ) (3)

which is equivalent to the iterative iterations as seen in Euler discretization [76]. One can then imagine
the limit of infinitely many discrete computations, or infinitely small time steps (shown in Figure 5), which
transforms the above expression into an ODE as follows320

dZ(t)

dt
= f(Z(t), t, θ) (4)

Therefore, to evaluate the state at any time, one can employ a wide range of ODE solvers to evolve the
hidden state in time. Note that in Eq. 4 the neural net is considered to also be a function of time t, which
could also sometimes be referred to as the depth of the network when the ODE solver recurrently performs
the forward pass through the net.

Adjoint Method325

It is not straightforward to compute the gradients through the ODE solver during the backward pass of the
backpropagation algorithm. The adjoint method is a way to compute the gradients by solving a second,
augmented ODE backwards in time and is applicable to all ODE solvers [12].
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Figure 5: Derivation of neural ODEs from a recurrent computation by the same computational unit f of state Z0

to state Zf . Thinking of each computational unit being at some time t and giving us a change in time of ∆t, one can
realise that at lim∆t→0 we arrive at the continuous limit, where the continuous change of Z(t) in time defines an ODE
of f parametrised by time t.

As before, our goal is to optimize a loss function L(Z(tf )), where the input is the result of the ODE
solver at final time tf . Hence we require the gradients of L(Z(tf )) with respect to parameters θ. This can
be summarized by calculating three ODEs as given in the original paper [12] as follows

Z(tf ) =

∫ tf

t0

dZ(t)

dt
dt =

∫ tf

t0

f(Z(t), t, θ)dt (5)

A(t0) =

∫ t0

tf

dA(t)

dt
dt =

∫ t0

tf

−A(t)⊤
∂f(Z(t), t, θ)

∂Z
dt (6)

∂L

∂θ
=

∫ t0

tf

A(t)⊤
∂f(Z(t), t, θ)

∂θ
dt (7)

where A(t) is the adjoint given by

A(t) =
∂L

∂Z(t)
(8)

whose dynamics are governed by an ODE integrated in Eq. 6 and can be thought of as the instantaneous330

analog of the chain rule. Note that this theoretically restrains to the use of continuously differentiable
activation functions [24].

To sum up, Eq. 5 computes the trajectory forward in time, Eq. 6 then computes the adjoint backwards
in time and then finally Eq. 7 computes the required gradients for the update rule. Thankfully, these
separate integral calls may be simplified in a single call to an ODE solver by concatenating, also known as335

augmented state dynamics (see Appendix A.3).

Figure 6: Reverse-mode differentiation of an ODE solution using the adjoint method (re-created from [12])
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4 Learning Toy Potentials

4 Learning Toy Potentials

4.1 Method

Statistical Mechanics Sampling

In statistical mechanics [77], when one wants to determine the value of a macroscopic variable A, one needs340

to evaluate the ensemble average over all the microstates of the system as follows

⟨A⟩ =
∫
Z
A(Z)

e−βH(Z)

Q
dZ (9)

where Z are the system coordinates, A(Z) is the function of the observable, β = 1
kbT

(where kb is the
Boltzmann constant and T is the temperature), H(Z) is the Hamiltonian of the system, and Q is the
canonical partition function, i.e. Q =

∫
Z e

−βH(Z)dZ.

As the system coordinates Z consist of the positions X and the momenta P, where only the integration345

over momenta P can be calculated analytically, numerical techniques have to be introduced to integrate
over positions X and thus determine an approximation to the ensemble average ⟨A⟩. Sampling techniques
are a way of approximating this integral as

ÂN =
1

N

N∑
n=0

A(Zn) (10)

where N is the number of drawn samples and Zn is the system coordinates of sample n. By taking enough
samples, limN→∞ ÂN = ⟨A⟩.350

As a naive grid search to evaluate this integral would be tedious, clever approaches have been developed
to sample only the important regions of the phase space. Here we consider molecular dynamics and Monte
Carlo sampling. As we explain MC sampling, we are going to show how it can be utilised with MD to
describe the so-called Hamiltonian Monte Carlo sampling scheme.

Molecular Dynamics355

The idea behind MD is to evolve many-particle systems by using Newton’s equations of motion. We are
therefore essentially performing a physical experiment inside a computer, where we observe the evolution of
particle trajectories as we iterate through the time. This samples microstates from the desired ensemble.

In Hamiltonian mechanics, the total energy of the system, i.e. the Hamiltonian, is given by

H(X,P) = K(P) + V (X) =

N∑
i=0

p2
i

2mi
+
∑
i,j

V (xi,xj) (11)

where the kinetic energy K is only dependent on the individual particle’s momenta pi (where mi is the
particle’s mass), and the potential energy V is only dependent on positions X and is separable into pair-wise
contributions between particles i and j. The coupled Hamilton’s equations of motion are then

dX

dt
=
∂H(X,P)

∂P
(12)

dP

dt
= −∂H(X,P)

∂X
(13)

These are the underlying equations we are going to use to evolve our system. If we expand them using
Eq. 11 and look at the change of particle i in terms of its position xi and pi then

dxi

dt
=

pi

mi
= vi (14)

dpi

dt
=
∑
i,j

−
∂V (xi,xj)

∂xi
= Fij (15)
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4.1 Method

Velocity-Verlet Integration360

As the equations of motion in Eq. 14 and 15 are differential equations, we need to use an integration
algorithm to propagate these equations forward in time. Velocity-Verlet is a well-known numerically stable
and simple algorithm used in MD. It is exactly time-reversible and given conservative forces it also conserves
linear momentum. More importantly, it has excellent energy-conserving properties even with long time steps,
which is essential when simulating MD in the NVE canonical ensemble [38]. Below we give the leapfrog365

version of the algorithm written in terms of momenta for a single time step as

1. momentum at half-step (’half-kick’, xi constant)

pi

(
t+

∆t

2

)
= pi(t) +

∆t

2

dpi

dt

∣∣∣
t

(16)

2. position at full-step (’drift’, free flight with pi constant)

xi (t+∆t) = xi(t) +
∆t

mi
pi

(
t+

∆t

2

)
(17)370

3. momentum at full-step (’half-kick’, xi constant)

pi (t+∆t) = pi

(
t+

∆t

2

)
+

∆t

2

dpi

dt

∣∣∣
t+∆t

(18)

Hamiltonian Monte Carlo

In an MC algorithm, the integral from Eq. 9 is computed by sampling from a probability distribution set
up as a Markov chain, where each new sample is proposed and accepted as to obey detailed balance. The375

Metropolis-Hastings algorithm can be summarized as follows

1. initial system configuration

X0

2. proposal of a new configuration by random walk

Xn + δX → Xn+1

3. accept the new configuration according to the acceptance probability

a(Xn+1|Xn) = min

(
1,

exp (−βH(Xn+1))

exp (−βH(Xn))

)
(19)

To improve sampling of important regions in phase space, HMC instead gives the system a random momen-
tum in Step 2. and then evolves it in time using Hamiltonian dynamics to get a new proposal. An example
of such HMC trajectories is given in Figure 7.380

To obey detailed balance, the acceptance in Eq. 19 has to change, modifying the HMC algorithm as

2. proposal of a new configuration via sampling of a random momentum and then evolve it in time

Xn → (Xn,Pn)

3. accept the new configuration according to the acceptance probability

a
(
(Xf ,Pf )|(Xo,Po)

)
= min

(
1,

exp (−βH(Xf ,−Pf ))

exp (−βH(Xo,Po))

)
(20)

The choice of momenta sampling is crucial here as it determines the target sets one is going to explore within
the energy landscape. We choose the Euclidean-Gaussian kinetic energies defined by

K(X,P) =
1

2
PTM−1P+ log |M|+ constant (21)
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4 Learning Toy Potentials

Figure 7: Example HMC trajectories inside a 2D Shell potential. a) Three accepted successive steps are followed by
two rejections. Dashed lines show the contours of the potential, where darker shade refers to lower energy. b) Left:
All steps are accepted. Right: Phase space in the first dimension showing the discontinuity when sampling of new
momentum occurs (red line).

where M is in the physical perspective also called the mass matrix and it defines the sampled Gaussian385

distribution of momenta for particle i as
pi ∼ N (0, M) . (22)

where the variance is approximated by the covariance of the most recent sampled positions as

M−1 = E[(X− µ)(X− µ)T ] (23)

where µ is the mean of the recent X used for sampling. This dynamics proposal step is where we aim to use
neural ODEs to evolve our trajectories. We are going to abbreviate this implementation of neural ODEs
within the HMC sampling scheme as neural HMC.390

Figure 8 shows how we set up the ODEs in a physics-informed way, where the change in position is
defined explicitly from the momentum and hence we only need to parametrize the potential. Here note that
if one would employ neural ODEs to learn the coupled differential equations of motion together without any
physics-informed structure (i.e. a single net outputs two ODE approximations), then the acceptance rule
(Eq. 20) would have to be adjusted as neural ODEs would no longer be phase space preserving [78]. A brief395

outline of this adjustment is given in Appendix A.4.

Figure 8: Schematic diagram of state variable evolution of the potential V ′(xi) approximating V (xi).
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4.1 Method

Experiment

Hamiltonian dynamics trajectories were generated for three different potentials - 2D Shell, 10D Gaussian and
2D Wolfe-Quapp. We are effectively simulating a single particle in a potential well, hence we omit particle
index i in the notation and the positions and momenta are only x and p. These are defined respectively as400

VShell(x) =
|r − r0|
αShell

r = ||x|| (24)

where ||x|| is the norm of position x, r0 is the radius of the shell (set to
√
2) and αShell is the slope of the

shell (set to 0.5). The shell potential was chosen to investigate the properties of neural ODEs in an unusual
energy landscape with a discontinuity in the force, as the first derivative is discontinuous at the canyon of
the shell at r = r0 as well as the origin r = 0.

VGaussian(x) =
1

2

∑
i

xi

αGauss
i

(25)

where αGauss
i is a constant (set to 1 for all i) and i denotes the dimension (where we simulate in 10 dimen-405

sions). A Gaussian potential is a common energy landscape to be tested. Here, we purposely tackle more
dimensions to investigate neural ODE behaviour when scaling the number of degrees of freedom.

VWolfe-Quapp(x) = x41 + x42 − 2x21 − 4x22 + x1x2 + 0.3x1 + 0.1x2 (26)

where x1 and x2 are the positions in the two dimensions. This toy potential is interesting to investigate as
the dominant fluctuations that lead from one minima to the other are in an oblique direction with respect
to the two dimensions [79]. Figure 9 shows the three investigated potentials.410

Figure 9: Potential energy contour plots of the three toy potentials - 2D Shell, 10D Gaussian (first two dimensions)
and 2D Wolfe Quapp.

The training dataset of positions and momenta {X,P} was generated from HMC simulations for 20 000
samples, where the momentum was sampled based on the covariances of the 500 most recent positions. The
trajectories come from the dynamics evolved during the proposal step. These dynamics were run for 100
time steps, where for the 2D Shell the step size was 0.01 and for the others it was 0.1. The choice of the
time step was chosen so that the total energy has relatively low fluctuations. A test dataset is then also415

generated with the same parameters but only 5 000 trajectories.

All NNs used are 2-layers deep and 50-neurons wide. Apart from the final layer neuron with a linear
activation function, all other neurons used Sigmoid as the activation function. The Adam optimizer was used
for 20 000 epochs with the LambdaLR, where the scheduling frequency was every 2 000 epochs and the scaling
factor was 0.6. The initial learning rates used were 0.1 for the 2D Shell and 10D Gaussian, while 0.025 was420

used for the 2D Wolfe-Quapp potential. The batch size was 800 trajectories of 10 time steps each.

This part of the investigation has three subtasks done for each potential. Firstly, we investigate the
effect of loss function choice. For each potential, we run 5 independent training procedures with the
same hyperparameters as above (but only 10 000 epochs) for three different scenarios. We either define the
loss based on the mean absolute difference in position (Eq. 27), momentum (Eq. 28), or both (Eq. 29).425
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4 Learning Toy Potentials

Here we use the entire training dataset and hence evaluate the performance using the test dataset. For
completeness, the loss functions go as follows

L(X, X̂) =
1

NTd

N∑
n=1

tf∑
t=t0

|Xn(t)− X̂n(t)|
σunit

(27)

L(P, P̂) =
1

NTd

N∑
n=1

tf∑
t=t0

|Pn(t)− P̂n(t)|
πunit

(28)

L(X, X̂,P, P̂) =
1

2NTd

N∑
n=1

tf∑
t=t0

(
|Xn(t)− X̂n(t)|

σunit
+

|Pn(t)− P̂n(t)|
πunit

)
(29)

where N denotes the number of trajectories in a batch, T is the number of time steps between times t0430

and tf and d is the dimensionality. Note that we formalize the loss by normalizing the difference with the
position and momenta units σunit and πunit respectively, but this should not theoretically affect the results
as πunit = σunit/τunit and so the two are inherently related and scale appropriately already. The loss is then
considered to be unitless.

Secondly, we obtain the learning curves of the test loss with respect to the number of training tra-435

jectories used. We use the best performing loss function from the first subtask above. We run 5 independent
training procedures at training sizes of 100, 200, 500, 1 000, 2 000, 5 000 and 10 000 trajectories.

Thirdly, we learn 5 independent potentials whose performance we evaluate by HMC sampling. We
therefore run 25 regular HMC runs using the usual Verlet dynamics proposal mechanism, obtaining 100, 200,
500, 1 000, 2 000, 5 000 and 10 000 MC samples as a benchmark reference. Then for each of the independent440

NN models, we run 5 independent runs of neural HMC for the same number of MC samples, thus giving
us 25 neural HMC trajectories. For these neural HMCs, we also separate between two scenarios, where the
Hamiltonian in the acceptance probability (Eq. 20) is calculated by either the ML potential or the exact
expression of the potential (Eqs. 24, 25 and 26).

4.2 Results445

Loss Function Choice

Table 1 shows the loss function considering both positions and momenta performs relatively well across all
the tested potentials. The uncertainties are relatively high for the 10D Gaussian and the 2D Wolfe-Quapp,
which is to be expected due to their more complex nature than the 2D Shell. These results suggest that it
is reasonable to use L(X, X̂,P, P̂) as the loss function captures the maximum possible discrepancy between450

the true and the predicted trajectories. There are no significant gains to only learning on the positions or
the momenta.

Table 1: Results of learning various ML potentials with neural ODEs using different definitions
of the loss function. The hat symbol refers to the predicted variable by the model. The test
loss is defined by the mean absolute difference of the trajectories including both the positions
and momenta. The uncertainty comes from the standard deviation of 5 independent trials.

Test Loss

Loss Function 2D Shell 10D Gaussian 2D Wolfe-Quapp

L(X, X̂) 0.31058± 0.00665 0.02739± 0.00365 0.12252± 0.02130

L(P, P̂) 0.28479± 0.00033 0.02217± 0.00295 0.18427± 0.06049

L(X, X̂,P, P̂) 0.28198± 0.00009 0.02323± 0.00218 0.12123± 0.01693

HMC and Neural HMC

Figure 10 summarizes the results for all three potentials. In general, we can see increasing the number of
training trajectories decreases the test error, but at some point there is diminishing returns and a larger455

dataset brings only marginal improvements. Different potentials achieve such saturation at different dataset
sizes, depending on the potential’s complexity and trajectory distribution in the training dataset. Note
the high uncertainty when learning the 2D Wolfe-Quapp for small training datasets (Fig. 10c-i). This
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4.2 Results

(a) 2D Shell. Unit distance σunit = 0.5r20, where r0 is the radius of the shell.

(b) 10D Gaussian. Unit distance σunit = αGaussian
i , where αGaussian

i is the coefficient in the Gaussian (Eq. 25).

17



4 Learning Toy Potentials

(c) 2D Wolfe-Quapp. Unit distance σunit = α0, where α0 is the unit factor for the quartic part of x1 and x2 (Eq. 26).

Figure 10: Results of learning three toy ML potentials using neural ODEs. All uncertainties are given by the standard
deviation. All simulations use reduced units of energy, mass and time respectively as follows: ϵunit = kBT , munit = m0,
where m0 is the particle’s mass, and τ2unit = (σ2

unit ·munit)/ϵunit. For each potential, we give: i) Relationship between
increasing the number of training trajectories and the decreasing test mean absolute error (defined by Eq. 29). ii) Heat
map of learned ML potential, where the black lines show the contours of the true at logarithmic intervals (dashed
represents negative energies). iii) Side profile of the ML potential where we fix x2 = 0 from ii) compared to the true
potential. Both ii) and iii) plots have the ML potential shifted so they align with the analytical potential, which does
not affect gradients derived. iv) Sampled means from HMC simulations with regular Verlet evolution of the proposal
step. v) Sampled means from neural HMC, where the proposal step is integrated through neural ODEs, but the MC
step uses the exact definition of the potential. vi) Same as v) but the MC step uses the ML potential to determine
the acceptance probability. The dashed black line shows the target mean at the origin for all potentials.

is presumably due to the complex topology, as well as training instability observed for the potential and
was more common with lower dataset sizes. The loss would fail to decrease monotonically; we give some460

examples of the loss evolution in Appendix A.6.
The contour plots for the 2D Shell (Fig. 10a-ii) and 10D Gaussian (Fig. 10b-ii) show the inability for

NNs to extrapolate outside of the position distributions from the training datasets. The ML potentials fail
to capture the rounded nature of these for |x1| > 4 and |x1| > 5 respectively. In the side profile for the 2D
Wolfe-Quapp (Fig. 10a-iii) the interpolation of the sharp turn at the origin also suffers.465

As expected, regular HMC outperforms both versions of neural HMC in the 2D Shell (Figs. 10a-iv to
10a-vi) and 2D Wolfe-Quapp (Figs. 10c-iv to 10c-vi). Suprisingly though, neural HMC performs reasonably
well for the 10D Gaussian and outperforms regular HMC in terms of a lower mean with a lower uncertainty
(Figs. 10b-iv to 10b-vi). The regular HMC for 10D Gaussian hence performs relatively poorly with a high
uncertainty, suggesting a high-dimensional potential might be harder to sample with regular HMC than a470

low-dimensional.
The two neural HMC approaches then perform similarly in the 10D Gaussian (Figs. 10b-v and 10b-vi)

and the 2D Wolfe-Quapp (Figs. 10c-v and 10c-vi). For the 2D Shell (Figs. 10a-v and 10a-vi), the neural
HMC that uses the ML potential for the MC step has a very high uncertainty and a higher mean, suggesting
that the inaccurate prediction at the origin is corrected for by using the explicit potential.475
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5 Learning Diatomic Molecule

5.1 Method

Pair-Wise Interactions

To simplify computations, many MD simulations assume no multi-body interactions and only pair-wise
interactions are considered. Here we simulate a triatomic molecule connected by harmonic springs by480

learning the pair-wise potential from a trajectory of a diatomic molecule simulation (Figure 11). In other
words, we learn the quadratic potential between two atoms and then use that learned model to evolve three
atoms, where we assume that only the neighbouring atoms interact.

As before, the position of each atom i given by xi evolves by its momentum pi as in Figure 8. Here we
omit the bold notation as we only consider a one-dimensional molecule. The harmonic potential is485

V (xi, xj) =
1

2
k(|xi − xj | − r0)

2 (30)

where k is the harmonic bond constant (set to 1), r0 is the equilibrium distance (set to 1). In the diatomic
molecule setup shown in Figure 11a, one can reduce the representation into a single reduced mass oscillating
around the origin, i.e. centre of the spring. The potential and force then become

V (x∗) = −1

2
kx∗2 (31) F (x∗) = −∂V (x∗)

∂x∗
= −k(x∗ − r0) (32)

where x∗ is the displacement from the origin. This reduced particle has a reduced mass m∗ = m2

2m when
the two atoms have identical mass m. Our NN will thus learn this V (x∗) parametrized by the position of
the reduced particle x∗. When we employ V (x∗) in the triatomic molecule, we have to make sure that the
reduced coordinates of the system are reflected in the direction of the restoring force as shown in Figure 11b.
Therefore, combining that knowledge with Eq. 15 and the neighbour interaction assumption we evolve pi as

dp1
dt

= −∂V (x1, x2)

∂x1
− ∂V (x1, x3)

∂x1
=
∂V (x∗A)

∂x∗A
(33)

dp2
dt

= −∂V (x2, x1)

∂x2
− ∂V (x2, x3)

∂x2
= −

∂V (x∗A)

∂x∗A
+
∂V (x∗B)

∂x∗B
(34)

dp3
dt

= −∂V (x3, x1)

∂x3
− ∂V (x3, x2)

∂x3
= −

∂V (x∗B)

∂x∗B
(35)

where x∗A and x∗B are the reduced particle’s displacements from equilibrium for the two springs respectively.

Figure 11: Schematic of the simple harmonic oscillator experiment. a) Equivalent representation of a diatomic
molecule with a harmonic spring between two atoms and a reduced particle between two springs. Left representation
has atom x1 fixed at the origin, while x2 is free to oscillate. Right representation has two springs of half the spring
constant connected to a fixed wall with a reduced mass at displacement x∗ from the origin. b) Extension of the
diatomic spring to a triatomic molecule, where one needs to be careful about the directionality of the acting forces.
All atoms are free to move and neighbouring atoms exert forces of same magnitude but opposite sign. For instance, the
compressed spring A will exert a positive force FA as its x∗A will be smaller than zero, hence the right atom experiences
force FA, but the left atom has to experience −FA to move leftward.
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5 Learning Diatomic Molecule

Experiment490

Similarly to the toy potentials, the dataset of positions and momenta {X,P} of a reduced particle describing
a diatomic molecule with a spring was generated by performing HMC simulations for 20 000 samples. The
proposal step dynamics ran for 100 time steps of step size 0.1. Afterwards, 5 independent ML potentials
were trained for 5 000 epochs using the Adam optimizer. The initial learning rate was 0.02 and was scheduled
with LambdaLR by 0.9 every 1 000 epochs. The nets have a depth of 1 and a width of 50 neurons. The batch495

size was 800 trajectories of 40 time steps each. In the triatomic molecule, the positions of neither atom is
fixed and are free to move in respect to the frame of reference of the system.

5.2 Results

Figure 12a to 12c show the gradual improvement in modelling the harmonic potential and its force. As
with the toy potentials, we can see how well the NN can interpolate but fails to extrapolate beyond the500

trajectories of the training dataset. For reference, see Figures 12e and 12f that give the positions and
velocities distribution in the dataset. As the largest bond extension is at |x∗| = 2.5, we see the NN failing
to approximate for |x∗| > 2.5. For completeness, Figure 12d shows comparison between ReLU and Sigmoid
activation functions, where ReLU’s discontinuity fails to approximate the gradient for larger extensions x∗.

Figure 12: Unit distance σunit = r0, where r0 is the equilibrium distance between the atoms. a), b), c) Evolution
of the learned potential energy and its first derivative at various points throughout the training. The dashed lines
show the analytical solution given in Eqs. 31 and 32. d) Comparison of ML potentials with ReLU (solid) and Sigmoid
(dashed) activation functions. e), f) Distributions of positions and velocities respectively in the training dataset for
the diatomic molecule’s reduced particle.

Figure 13 shows the divergence in position is similar for the diatomic molecule as for the triatomic505

molecule. Nevertheless, the velocity of the middle particle v2 is more divergent than the velocity of the
reduced particle v∗ in the diatomic molecule. This is because of the error accumulation as the middle atom
experiences two forces, one from each side atom, whilst the side atoms always experience only one force.

Figure 14 shows the ML potential can be extended to the triatomic molecule when assuming pair-wise
interactions only. Special solutions in Figures 14a and 14b are captured, as well as a random initial condition510

in Figures 14c to 14f. The system’s energy oscillates in Figure 14e but does not explode.

20



5.2 Results

Figure 13: All uncertainties are given by the standard deviation of 5 independent ML potenatials. Mean absolute
difference is equivalent to the loss given in Eq. 29. Left: Divergence of the position and momenta of the reduced
particle within the diatomic molecule between the integrated ML potential and analytical solution given by x(t) =
v0
ω0

sin (ω0t) + x0 cos (ω0t) and v(t) = v0 cos (ω0t)− ω0x0 sin (ω0t), where ω
2
0 = k/m. Right: Divergence of the position

and momenta for the atoms inside the triatomic molecule between the integrated ML potential and a numerical solution
(given by integration with the exact potential). Data points for x1 and v1 follow that of x3 and v3, hence are hidden
behind.

Figure 14: Unit distance σunit = r0, where r0 is the equilibrium distance between the atoms. Unit time τunit = ω−1
0 ,

where ω0 is the natural oscillation frequency from Fig. 13. Triatomic molecule trajectories integrated using the ML
potential. Black dashed lines show the numerical solution integrated using the exact potential. a) No oscillation
solution (initial conditions: x1 = 0.0, x2 = 1.0, x3 = 2.0, all vi = 0.3). b) Oscillation solution with middle particle
stationary (initial conditions: x1 = 0.3, x2 = 1.0, x3 = 1.7, all vi = 0). c), d), e), f) Example of a random solution
(initial conditions: x1 = 0.3, x2 = 1.3, x3 = 1.7, all vi = 0) showing c) positions of atoms, d) forces on atoms, e)
system’s energy and f) velocities of atoms.
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6 Learning Coarse-Grained Composite Body Potentials

6 Learning Coarse-Grained Composite Body Potentials

6.1 Method

Rigid Body Kinetics

For a rigid body i, the minimum number of degrees of freedom to fully describe its configuration is six:515

xcom
i = (xcom1 , xcom2 , xcom3 ) for the position of the centre of mass (COM) and Φi = (ϕ, ψ, ξ) for the Euler

angles of the body’s orientation. A system of two bodies can hence be characterised by 9 degrees of
freedoms when one sets one of the body’s centre of mass as the origin. Such bodies hence interact by some
effective potential VCG(X

com,Q), where Xcom and Q are the COM positions and quaternion body rotations
respectively. Note that instead of using Euler angles Φ we are introducing quaternions Q as they are not520

prone to geometrical singularities and are computationally more efficient (see Appendix A.5 for more).

Figure 15: a) Composite bodies made of point particles that interact with pair potential V (X) can be represented as
centre of masses with an orientation interacting with a coarse-grained potential VCG(∆Xcom,Q). b) Schematic diagram
of state variable evolution of the coarse-grained pair potential model V ′

CG(∆Xcom,Q) approximating VCG(∆Xcom,Q).
This is essentially an extension of Fig. 8 with rotational dynamics now included as well.

Re-parameterizing the all-particle system HamiltonianH(X,P) (Eq. 11), where {X,P} are the positions
and momenta of all point particles making up the rigid body, gives the new Hamiltonian

H(Xcom,Pcom,Q,L) = Ktrans(P
com) +Krot(L) + VCG(X

com,Q) (36)

where Pcom describe the COM momentum, L are the 3-component angular momenta in body-fixed coordi-
nates, andKtrans andKrot are the translational and kinetic energies respectively. Hence, using the derivation525

from [80] and Eqs. 11 to 15, we show the differential equations for moving and rotating a N -particle com-
posite body i when interacting with another body j only:

dxcom
i

dt
=

pcom
i∑N
n mi

n

= vcom
i (37)

dqi

dt
=

1

2
G⊤J−1

i li (38)

dpcom
i

dt
= −

∂VCG(x
com
i ,xcom

j ,qi,qj)

∂xcom
i

= Fij (39)

dli
dt

= −Ωli −
1

2
G
∂VCG(x

com
i ,xcom

j ,qi,qj)

∂qi
(40)

where li is the angular momenta in body-fixed coordinates and Ji is the diagonalized matrix of moments of530

inertia. The matrix G effectively performs quaternion multiplication and is defined by the 4 components of
the quaternion q = [q0, q1, q2, q3] as

G =

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 (41)

and Ω is defined by its time derivative as
Ω = 2GĠ⊤ (42)

Lastly, we can use the fact that the pair-wise interaction is rotationally invariant in terms of the relative
COM positions, hence all we need to consider is the separation distance of the COMs giving us the modelled535

pair potential as V ′
CG(∆xcom

ij ,qi,qj), where ∆xcom
ij is the relative distance between the COMs.
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6.1 Method

Rotational Velocity-Verlet Algorithm

There are many variations of the Velocity-Verlet (leapfrog) algorithm to integrate rotational equations of
motions [81] [82] [83]. Here, we employ the integrator from LAMMPS which uses Richardson iteration [84] as a
correction step for the quaternion evolution. That should help in minimising deviations of our neural ODE540

solution from the training trajectories generated by LAMMPS. Note that the algorithm is given in body-fixed
angular momenta li, but one still has to be computing system-fixed l̃i for the Richardson correction. Also,
each update to a quaternion is followed by quaternion normalization (meaning each Eq. 46 to 49 is followed
by qi → qi

||qi||).

1. translational and angular momentum at half-step (’half-kick’, xi and qi constant)545

pcom
i

(
t+

∆t

2

)
= pcom

i (t) +
∆t

2

dpcom
i

dt

∣∣∣
t

(43) li

(
t+

∆t

2

)
= li(t) +

∆t

2

dli
dt

∣∣∣
t

(44)

2. centre of mass position at full-step (’drift’, free flight with pi constant)

xcom
i (t+∆t) = xcom

i (t) +
∆t∑N
n mi

n

pcom
i

(
t+

∆t

2

)
(45)

3. Richardson iteration for quaternion leapfrog (’drift’, free rotation with li constant)

(a) full-step Richardson update550

qfull
i (t+∆t) = qi(t) +

∆t

2
G⊤J−1 li

(
t+

∆t

2

)
(46)

(b) half-step Richardson update

qhalf
i

(
t+

∆t

2

)
= qi(t) +

1

2

∆t

2
G⊤J−1li

(
t+

∆t

2

)
(47)

(c) re-compute li(t+
∆t
2 ) at qhalf

i (t+ ∆t
2 ) from l̃i(t+

∆t
2 ) at qi(t)

(d) second half-step Richardson update555

qhalf
i (t+∆t) = qhalf

i

(
t+

∆t

2

)
+

1

2

∆t

2
G⊤J−1li

(
t+

∆t

2

)
(48)

(e) corrected Richardson update

qi(t+∆t) = 2qhalf
i (t+∆t)− qfull

i (t+∆t) (49)

4. translational and angular momentum at full-step (’half-kick’, xi and qi constant)

pcom
i (t+∆t) = pcom

i

(
t+

∆t

2

)
+

∆t

2

dpcom
i

dt

∣∣∣
t+∆t

2

(50) li (t+∆t) = li

(
t+

∆t

2

)
+

∆t

2

dli
dt

∣∣∣
t+∆t

2

(51)560

Experiment

For our composite body, we choose a simple 7-particle hexagon. All-atom trajectories were generated using
LAMMPS and its RIGID package that fixes the relative position of point particles into a desired shape. All
forces are transferred among the point particles whose positions remain constant relative to one another. The
package also conveniently computes L and Q. The bodies then interact through the pair-wise interactions565

between the point particles by the Lennard-Jones (LJ) potential defined as

VLJ(∆x) = 4ϵ

(σLJ
∆x

)12

−

(
σLJ

∆x

)6
 ∆x < rc (52)

where ∆x is the particle separation, ϵLJ is the depth of the potential well, σLJ is the distance at which the
potential energy is zero (or equivalently the size of the particle) and rc is the cutoff radius of the potential.
To simplify the problem, we define a purely repulsive LJ potential shown in Figure 16a. ϵLJ and σLJ

are both set to 1. To achieve random initial configuration, the system is initialized in an NVT canonical570

ensemble for 105 time steps, where the time step is 10−5 τunit. Then a short trajectory is generated in
an NVE microcanonical ensemble for 107 time steps with a logging frequency of every 102 steps. LAMMPS
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6 Learning Coarse-Grained Composite Body Potentials

outputs COM positions, COM velocities as well as quaternion rotations and angular momenta. Our training
dataset hence contains a single trajectory of 105 time steps, where the effective time step is 10−3 τunit.

As we want to primarily consider the phase space where the two bodies interact, we introduce a harmonic575

restraint keeping the two bodies within an interaction distance. This external potential is given by

Vext(∆x
com) =

1

2
kext(∆x

com −∆xcom0 )2 (53)

where the equilibrium distance ∆xcom0 is set to 2l (where l is the hexagon’s dimension shown in Figure 16b).
kext is then defined so that there is Vext = 5kBT when the bodies stop interacting and is given by

kext =
10T ∗

r2c
T ∗ =

kBT

ϵunit
=

T

ϵunit
(54)

where T ∗ is the reduced temperature and kB is set to 1 in LAMMPS by default. The NVE simulation is done
at T ∗ = 0.5, hence k ≈ 3.96852 ϵunit/σ

2
unit. LAMMPS was set to the lj reduced units system and the input

file is given in Appendix A.7. During training we add analytically calculated Vext to the effective potential
of the system Veff = Vext + VCG, hence PyTorch automatically learns the difference VCG between Veff and580

Vext.

Figure 16: a) Lennard-Jones potential with cut-off at the minimum energy given by rc = 6
√
2σLJ ≈ 1.2246σunit.

b) Description of the regular hexagons and the distance where Vext(2l + rc) = 5kBT . c) Harmonic restraint potential
with the highlighted separation distance and energy from b).

We purposely choose a short trajectory to overfit our CG model so that we test out our implementation
of neural ODEs with rotational dynamics. Therefore, we use a small 2-layer NN with 1000 neurons in
both layers. To be more specific, we learn the potential V ′

CG(∆xcom,qi,qj) as a function of 11 component
variables. The input layer of 11 neurons receives the 3-component separation vector between COMs, and585

the 4-component quaternions for bodies i and j. As before, the output layer has a single linear neuron that
gives us the potential energy, of which we take the gradients in respect to the inputs. The model was pushed
to the limits to overfit, hence there were several training stages as shown in Table 2. The training and test
loss are then the mean absolute difference of all state variables as given in Eq. 55.

Table 2: Training procedure parameters for overfitting a pair-wise CG potential on the 7-particle hexagon system
using the Adam optimizer and LambdaLR scheduler in PyTorch, where the test loss is given by Eq. 55. For all iterations,
each batch had 600 trajectories of 20 time steps each.

Iteration Epochs Initial Learning Rate Scheduling Freq. Scheduling Factor Final Test Loss

1 30 000 0.035 1 000 0.85 0.0013018
2 50 000 0.020 5 000 0.85 0.0003558
3 50 000 0.010 10 000 0.85 0.0002310

L(X, X̂,P, P̂,Q, Q̂,L, L̂) =
1

13NT

N∑
n=1

tf∑
t0

(
|Xcom

n − X̂com
n |

σunit
+

|Pcom
n − P̂com

n |
πunit

+ |Qn − Q̂n|+
|Ln − L̂n|
λunit

)
(55)

where we extend Eq. 29 with the rotational parts; the hat symbol refers to the predicted variable by590

integrating the model, λunit is the unit of angular momenta, quaternions are unitless and a factor of 13
comes from adding together the dimensions of the four variables, i.e. 3 + 3 + 4 + 3 = 13.
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6.2 Results

6.2 Results

Figure 17 shows the overfitted trajectories and their divergences with longer integration times. The model
primarily captures the interactions at shorter timescales while struggling with longer ones. It was also595

observed that the translational integration diverges more and oftentimes explodes, which is starting to
happen to the velocities in Figure 17b. This is then supported by the divergence at the bottom in Figures 17g
to 17i, where the translational component becomes dominant at longer trajectories. Nevertheless, this is to
be expected as the contribution from quaternions is always going to be lower due to their normalization.

Figure 17: Results of overfitting V ′
CG(∆xcom,qi,qj) on a short 105 time step trajectory of two 7-particle hexagons.

The black dashed lines shows the training trajectory components from LAMMPS. a) Separation distance between
centre of masses. b) Components of the relative velocity of the centre of masses. c), f) Components of the quaternions
describing the bodies. d), e) Components of the angular velocities describing the rotational motion. g), h), i)
Divergence of the translational, rotational and all state variables with increasing number of time steps (1 time step =
10−3 τunit). This is equivalent to Eq. 55, where for g) we only consider positions and momenta of the centres of mass;
and for h) we only consider the angular momenta and quaternions. Uncertainties are given by the standard deviation
of 100 independent trajectories.
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7 Discussion600

All of the results confirm the usability of neural ODEs as a training procedure towards learning ML poten-
tials. The first task has shown that neural ODEs might be employed in the HMC sampling scheme. The
second task then confirmed the feasibility of learning pair-wise ML potentials. Lastly, the final task has
shown the ability to learn pair-wise CG potentials for rigid bodies. Below we discuss the overall importance
of the results and suggest further exploration paths towards building knowledge of using neural ODEs to605

create automated coarse-graining pipelines for neural HMC simulations.

Training Datasets

The importance of generating relevant training trajectories is highlighted by the weak extrapolation abilities
of NNs in the toy potentials and the diatomic potential. The dataset generation should thus be carefully
studied and monitored to ensure training trajectories explore enough of the relevant phase space. For the toy610

potentials, our aim was to sample the observable mean, hence using HMC as the algorithm that produces
important regions of the phase space was ideal. For the harmonic potential, we limited the maximum spring
extension possible, hence we could have defined the relevant regions of the phase space by exploiting the
physical limits of the system. By assuming the atoms cannot collide, we limited the spring extensions to
a subset of the training position trajectories, meaning our ML potentials never had to extrapolate. This615

should be done with care as it might introduce a bias towards consequent microstate sampling, deviating
the MD trajectory away from the ergodic ensemble.

For the CG potential, it is difficult to evaluate the effect of the harmonic restraint as we only modelled
a very short trajectory, hence we learned on only a part of the phase space. Once we learn the phase space
using trajectories at different temperatures, with a distribution of translational and angular momenta, we620

realise that the harmonic restraint might become insufficient and we might need to utilise a more robust
method of exploring configurations. Moreover, composite bodies with more complex shapes will also require
more powerful sampling methods such as HMC [35] or metadynamics [85]. Also, as NNs might extrapolate
incorrectly, we stress the importance to sample enough of the phase space where the bodies do not interact
at all, hence ensuring that our model learns those regions that have flat topology, i.e. no force.625

Neural Net Architecture

In the first two tasks, the 2-layer net with 50 neurons in each layer exhibited the best performance learning
the 10D Gaussian and the diatomic potential, demonstrating how NNs with the same size perform better
at approximating simpler potentials compared to complicated ones. For the 2D Shell, the NN failed to
interpolate the sharp turn with a discontinuous first derivative at the origin. We suggest to compare ReLU630

and Sigmoid activation functions to learn the 2D Shell and thus aid the net in capturing the region near
the origin. We do this despite echoing the claims of [24] that non-differentiable activation functions, such as
ReLU, should not be used for neural ODEs. Moreover, we suggest this despite ReLUs failing to model the
force of the diatomic potential, because the modelled potential itself still resembled the harmonic potential
reasonably well. Furthermore, for the 2D Wolfe-Quapp we believe that a deeper net might yield significantly635

better results in terms of the sampled mean in neural HMC compared to regular HMC. For reference,
Bonati et al. [86] have used a 3-layer NN with 48, 24 and 12 neurons in successive layers respectively to
learn the same Wolfe-Quapp potential.

In the last task, we have not explored enough of the phase space to evaluate the effect of the NN size on
the results. More importantly, we have purposely chosen a small NN to ensure our implementation works640

correctly. As the net is able to approximate any function, if there was a mistake in any of the differential
equations or data manipulations defined, a sufficiently large net might learn the required correction trans-
formation, thus deceiving us into thinking our implementation is accurate. We have also not tried any other
activation functions, although as we are approximating a differentiable potential and it is assumed that
Tanh and Sigmoid activations perform similarly, naively using Sigmoid should be sufficient. Nevertheless,645

as the CG potential combines and mixes the interactions from translational and rotational contributions, it
might be worthwhile investigating differently sized layers with various extents of connectivity. An example
of such procedure might be pruning of neuron connections once a weight falls below a certain threshold
during gradient descent. This provides memory and computational compression, as well as it can help the
NN to emphasize certain pathways through the network over others.650
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Neural HMC

We also find that employing neural ODEs within HMC does not need to dramatically hinder the performance
of sampling thermodynamic averages, and in the case of the 10D Gaussian it even outperforms the regular
HMC. Although the difference is not statistically significant, we propose to reproduce this surprising result
by sampling more regular HMC and neural HMC trajectories. One could also investigate the effect of655

increasing dimensionality of the Gaussian. That might uncover whether the higher dimensionality of the
potential plays a role in making neural HMC competitive on performance.

Comparing neural HMC with the explicit and the model potentials shows that using the NN for the
MC step does not need to significantly increase the error in the sampled average. If the exact expression
of the potential is thus expensive to compute compared to the forward pass through the net, one might660

consider the trade-off between accuracy and speed. Referring to the CG potential, as the complexity of
the rigid body increases, the modelled potential might become easier to compute than all of the individual
point-particle pair interactions. Therefore, one could evaluate the CG potential rather than the original
potential, possibly gaining computational speed at the cost of accuracy. A statistical algorithm could also
be established that would alter between MC steps with the exact point-particle potential and the modelled665

NN potential, ensuring we stay in the correct ergodic sampling ensemble.

We acknowledge the limitations of benchmarking the neural ODE performance by comparing neural and
regular HMC sampled means. It might be worth considering what is the effect of having the average at the
origin of the energy landscape. Shifting the average away from the origin might show that the integrated
trajectories are somehow exploiting translation around the origin. Such exploitation may then vary between670

the regular Velocity-Verlet and the neural ODE integrations, hence giving us a biased comparison.

Pair-Wise Potentials

The feasibility of extending pair-wise diatomic ML potentials learned with neural ODEs to triatomic
molecules shows promising application towards scalibility. These results were to be expected as the NN
is only involved during the potential approximation, hence if the function approximation is reasonably675

accurate, then all the established practices from MD should hold. Nevertheless, we still show it as a proof-
of-concept that neural ODEs can be used within such context. We also note the accumulation of error that
occurs for particles with the most pair interactions. Note that neural ODEs can also be easily generalised
to learning multi-body potentials by increasing the number of neurons in the input layer.

Our current CG potential implementation could be further improved by considering just the separation680

distance between the centres of mass, rather than using the relative separation vector. Although the net
should be able to learn the simple transformation from the vector to its norm, it might still provide marginal
improvement.

Loss Functions

We do not learn much insight from testing different loss functions for the toy potentials. Even without685

further investigation, we however believe that using both positions and momenta seems like a reasonable
and working approach. On the other hand, a more suitable loss function may exist for the CG potential
as it also includes the more advanced ideas of rotational dynamics. That is because a loss defined as the
mean absolute difference will always be smaller for quaternion and angular velocity evolution compared
to translational separation and momenta. Although translational position and momenta of bodies might690

oscillate as we impose the harmonic restraint, the rotational variables are by definition going to oscillate,
especially the quaternions. Therefore, one might consider at least using the mean squared error to penalise
the translational variables from exploding. Another improvement might be to somehow scale or compute
the loss of the translational and rotational parts separately.

The choice of the loss function is quite arbitrary in the end. As Greener et al. [65] discusses, any property695

that can be computed from the system with a meaningful gradient can be used as a guide to learn the relevant
potential and hence its force field. Choosing the state variables of the spatial and rotational configuration
is primarily a matter of convenience, as one has to integrate those variables either way to propagate the
system forward in time. For specific applications, however, one might consider calculating statistical or
thermodynamic properties at each time step such as the radial distribution function, the correlation of700

different particle velocities, the energy of a system, a measure of phase change, or a combination of the
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7 Discussion

above. Note, however, that this introduces an additional calculation to extract such a property from the
training dataset and the predicted trajectories.

Speed and Optimization

We were not able to benchmark the memory cost advantages of neural ODEs over RNNs from [65]. As705

the intermediary values do not have to be computed, neural ODEs favour using large NNs integrated over
many time steps. Nevertheless, as we have not optimized our implementation of neural ODEs, integrating
for more time steps has dramatically increased training times. We suggest that the performance of longer
integrations is compared to shorter integrations, seeing whether less long trajectories can optimize the model
faster than many short trajectories.710

In addition, our code has not been properly optimized. Cleaning up data manipulation, minimising
variable assignment, or employing faster libraries for quaternion transforms (such as pytorch3d [87]) should
hopefully shorten training times. For instance, our current implementation for the rotational Velocity-Verlet
has to convert between system- and body-fixed coordinates, which should be addressed to minimise cost of
converting the frame of reference within each integration step. Also, due to convenience and practicality of715

Python and PyTorch, we also lose much computational performance only due to the inefficiencies of Python
compared to other programming languages. For production code, Julia’s DifferentialEquations.jl [88]
is probably the best non-Python option. One could then also consider the various ways to automate the
pipeline of generating MD trajectories from which to learn the CG potential. In an ideal scenario, one could
design software where the user only provides the description of the simulated bodies. As a black-box, the720

program could then run MD simulations for long enough based on some heuristic so to approximate the CG
potential sufficiently. The faster CG simulations would then take over and produce the final results to the
user. One could also provide pre-trained models on common composite body types, or rigid body shapes.

For the toy and harmonic potentials, we have run for far more iterations than was required to fully
train the NN. Hence only for the more complicated CG potential did the training times become the major725

bottleneck. We suggest utilising more GPUs in parallel using PyTorch’s DataParallel module which splits
the batched inputs across multiple training replicas on multiple GPU devices during the forward pass,
summing the gradients together into the original replica during the backward pass. This would allow for
faster iterations of hyperparameter tuning as well as faster revisions of training procedures when we have
to monitor the extent of phase space exploration in our trajectories.730

Training a CG Potential

As shown in the method details in Section 6.1, training the CG potential was quite tedious as no clear set of
hyperparameters was found to perform well over the entire training procedure. We hope to develop suitable
good practices for training CG potentials using neural ODEs as there is currently no available literature on
that topic.735

Although neural ODEs should be able to find the dynamics that fit even sparse trajectories, we found
it difficult to find hyperparameters that would learn a CG potential for trajectories with longer time steps.
We also struggled to learn on trajectories with many frequent collisions between bodies. This suggests the
choice of the time step as well as the temperature should be tuned carefully as to simplify the training
procedure for the adjoint method as much as possible. For instance, one might start training on trajectories740

from low temperature simulations with slow dynamics, where collisions happen infrequently, learning the
essentials of the ML potential first; and then gradually adding trajectories from higher temperatures which
might be harder to train on from scratch otherwise.

As we now have some parameters of a CG model, we will attempt to further improve accuracy by feeding
in new trajectories from different regions of the phase space. This procedure is referred to as fine-tuning,745

where a pre-trained model is utilised as the initial set of NN parameters to be further improved by learning
on new data for a specific task of choice.
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Advanced Implementations

Regardless of the shape of the composite body, the NN describing the CG potential might have learned
some essential, baseline properties of potentials that mix the energy contributions from translational and750

rotational configurations. Therefore, one may employ trained CG models for other types of composite
bodies than the ones trained on, hopefully shortening the amount of training epochs required as one is only
fine-tuning the model, transfering some inherent knowledge about rigid body based CG potentials along the
way.

Moreover, neural ODEs and the adjoint method only define the training procedure rather than the NN755

architecture. Therefore, it might be exciting to attempt using different architectures such as the recently
popular graph NNs, which have shown success in defining interatomic potentials for MD simulations [47] [89].
One could hence try to apply graph neural ODEs [90] by combining the trajectory training principles of
learning potentials as we have done here with the graph structure.
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8 Conclusion

8 Conclusion760

This thesis investigated the use of neural ODEs as a procedure to learn ML potentials from MD trajectories
within the context of CG simulations. After introducing the theory of neural ODEs and HMC sampling, we
performed two experiments where we learned valuable lessons for the final aim of developing an automated
coarse-graining pipeline for composite body simulations. Due to time constraints of the thesis, the final task
was cut short and only worked as a proof-of-concept. Still, the thesis included the first uses of neural ODEs765

in HMC sampling and coarse-graining of rigid bodies found in literature.
In the first experiment we learned ML potentials with neural ODEs on three examples: 2D Shell,

10D Gaussian and 2D Wolfe-Quapp. The accuracy varied for each, but all models performed competitively
well when employed in proposing the next sample in an HMC simulation. We also showed one can use the
learned potentials to perform the acceptance probability calculation in the MC step, potentially increasing770

simulation speeds.
The second experiment showed the feasibility of extending pair-wise potentials to multi-body interactions

when learned through neural ODEs. The example used was a diatomic molecule connected by a harmonic
spring, where we employed the learned potential to simulate a triatomic molecule. We are thus confident in
the scalibility of the neural ODE approach for simulations of large systems with many particles.775

The third experiment demonstrated the proof-of-concept application of learning a CG potential of com-
posite bodies solely based on the position of their centre of mass position and their orientation. Our toy
problem was made of two 7-particle hexagons interacting with the LJ potential. We successfully overfitted on
a short trajectory, validating our neural ODE implementation that learns based on rotational kinetics. The
generality of NNs hence proved useful when parametrizing such a complicated, high-dimensional potential780

with no clear analytical form.
Further work will consist of enhancing the CG model to learn the entire phase space of the two hexagon

system. After optimizing the computational cost, the CG model will be benchmarked to an all-particle
simulation. Afterwards, it will be useful to see the demands on the NN size and architecture when attempting
to learn on bodies with complex surfaces and various interaction sites.785

Neural ODEs seem like one of the plausible solutions to scaling computer simulations and should
be explored further. They provide an alternative to the common approach of learning potentials on
structure-energy or structure-force snapshots. Nevertheless, neural ODEs are still computationally demand-
ing and thus may prove useful only in specific MD simulations. It will therefore be necessary to follow the
advancements of both the AI research related to neural ODEs optimization, and the field of computational790

physics related to CG simulations, to fully determine their utility in the future.
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A Appendix

A.1 Backpropagation algorithm1030

For instance, to update weight w1
33 in Figure 18a, the gradient to find is

∂L

∂w1
33

=
∂L

∂ŷ

∂ŷ

∂σ31

∂σ31
∂a31

∂a31
∂w1

33

=
∂L

∂ŷ

∂ŷ

∂σ31

∂σ31
∂a31

·w2
31

∂σ23
∂a23

σ13(a
1
3) (56)

as the pre-activation values of the two relevant neurons are

a31 =
∑
i

w2
i1σ

2
i + b31 = w2

11σ
2
1 + w2

21σ
2
2 + w2

31σ
2
3 + b31

a23 =
∑
i

w1
i3σ

1
i + b23 = w1

13σ
1
1 + w1

23σ
1
2 + w1

33σ
1
3 + b23

(57)

Figure 18: Small neural net of 2 hidden layers (d = 1 and d = 2) and 3 neurons in each
hidden layer (w = 1, w = 2 and w = 3). Red shows the path of the backpropagation algorithm
for calculating the gradient of the loss function with respect to w1

33 solved in Eqs. 56 and 57

A.2 LambdaLR Scheduler

This scheduler sets the learning rate to the initial learning rate multiplied by a given function λ(b) = αb,
where α is the scheduling factor and b is the number of scheduling steps already taken. That is defined
by the integer division b = n//β, where n is the training epoch number and β is the scheduling frequency.1035

Therefore, the learning rate is η(n) = λ(n)η(0) = αbη(0) .

A.3 Augmented Dynamics of the Adjoint Method

Below we reproduce the derivation of the adjoint state from the original neural ODE paper [12]. When one
views θ and t as states with constant differential equations as

∂θ(t)

∂t
= 0

∂t(t)

∂t
= 1 (58)

Combining these into an augmented state gives

d

dt

Zθ
t

 (t) = faug([Z, θ, t]) :=

f([Z, θ, t])0
1

 (59)
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The adjoint state of the augmented dynamics then follows

Aaug :=

A
Aθ

At

 Aθ(t) :=
∂L

∂θ(t)
At(t) :=

∂L

∂t(t)
(60)

This formulates the augmented ODE as an autonomous (time-invariant) ODE. The Jacobian of f then has
the form1040

∂faug
∂[Z, θ, t]

=

 ∂f
∂Z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t) (61)

where 0 is a matrix of zeros with the appropriate dimensions. Plugging this into the differential equation of
the adjoint

∂A(t)

∂t
= −A(t)

∂f(Z(t), θ)

∂Z(t)
(62)

gives us
∂Aaug(t)

∂t
= −

[
A(t) Aθ(t) At(t)

] ∂faug
∂[Z, θ, t]

(t) = −
[
A ∂f

∂Z A∂f
∂θ A∂f

∂t

]
(t) (63)

The first element gives the regular adjoint differential equation in Eq. 62. The second element can be used
to obtain the total gradient with respect to the parameters θ by integrating over the full interval and setting1045

A(tN ) = 0 as
∂L

∂θ
= Aθ(t0) = −

∫ t0

tN

A(t)
∂f(Z(t), t, θ)

∂θ
dt (64)

The last element then can also get the gradients with respect to t0 and tN as

∂L

∂tN
= A(tN )f(Z(tN ), tN , θ)

∂L

∂t0
= At(t0) = At(tN )−

∫ t0

tN

A(t)
∂f(Z(t), t, θ)

dt
(65)

A.4 Continous Normalizing Flows and Hamiltonian Monte Carlo

Neural ODEs are not phase space preserving if there is a transformation of variables, meaning they do not
conserve probability densities during integration. These models are referred to as continous normalizing
flows and their probability density follows a second order differential equation called the instantaneous1050

change of variables formula [12].
∂ log p(Z(t))

dt
= −Tr

(
df

dZ(t)

)
(66)

log p(Z(t1)) = log p(Z(t0))−
∫ t1

t0

Tr

(
df

dZ(t)

)
dt (67)

Similarly to the augmented dynamics in Eq. 59, we integrate the trace in Eq. 67 by concatenating a zero
to the neural ODE input [78]:

log p(Z(t1)) = log p(Z(t0))−
∫ t1

t0

Tr

(
df

dZ
(t)

)
dt (68)

The solutions to the dynamics are given as1055 [
Z(t0)

log p(Z(t1))− log p(Z(t0))

]
=

∫ t0

t1

 f(Z(t), t, θ)
−Tr

(
∂f

∂Z(t)

) (69)

where the initial values are [
Z(t1)

log p(Z)− log p(Z(t1))

]
=

[
Z
0

]
(70)

One can then use the second element from the solution in Eq. 69 to give the acceptance probability as

a
(
Z(t1)|Z(t0)

)
= min

(
1,

exp (−βH(Z(t1))

exp (−βH(Z(t0))
+
p(Z(t1))

p(Z(t0))

)
(71)
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A.5 Quaternions

Quaternions are a tuple of 4 numbers

q =
[
w x y z

]
=
[
w v

]
= w + xi+ xj+ q3k (72)

where w is the scalar part and v is the vector part with components x, y and z. In rotations, quaternions1060

are always normalised by the norm
||q|| =

√
w2 + x2 + y2 + z2 (73)

Unit quaternions describe a rotation in 3D. To rotate a vector r (for instance, angular velocity or momentum),
a conjugation is performed to give the rotated vector as

r′ = q⊗
[
0 r

]
⊗ q∗ (74)

where the conjugate quaternion is defined as

q∗ =
[
w −x −y −z

]
(75)

The inverse of a quaternion describes the opposite rotation and for a unit quaternion is given by1065

q−1 =
q∗

||q||
= q∗ (76)

Note that quaternion multiplication is non-commutative (q1 ⊗ q2 ̸= q2 ⊗ q1) and is defined by Hamilton’s
product as

q1 ⊗ q2 =
[
w1w2 − v1 ·v2 w1v1 + w2v1 + v1 × v2

]
(77)

This can be re-written

q1 ⊗ q2 =


w1w2 − x1x2 − y1y2 − z1z2
w1x2 + w2x1 + y1z2 − y2z1
w1y2 + w2y1 − x1z2 + x2z1
w1z2 + w2z1 + x1y2 − x2y1

 (78)

From inspection, this gives the matrix product:

q1 ⊗ q2 =


w2 −x2 −y2 −z2
x2 w2 z2 −y2
y2 −z2 w2 x2
z2 y2 −x2 w2



w1

x1
y1
z1

 (79)

This is where G matrix from Eq. 41 comes from.1070

A.6 Loss Evolution for 2D Wolfe-Quapp

Figure 19: Training loss of independent learning runs. a) Expected monotonically decreasing loss. b) Training
instability with an exploding gradient half-way through training that was not corrected for by running for more
training epochs. c) Training instability with a slow convergence bounded way above the desired final loss, hence a
complete re-initialisation of training is required.
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A.7 Input File for 7-Particle Hexagon LAMMPS Simulations

# Input file for LAMMPS 2 hexagonal rigid bodies

# Author: Shanil Panara

# Date: 13/01/20221075

# Notes:

# use of MOLECULE package for binding particles in a rigid body

# NVT simulation

##################################### SETUP #####################################1080

# ------------------------------- INITIALISATION --------------------------------

units lj # could also be: real, metal, si

dimension 3 # create box

boundary p p p # all three boundaries are non-periodic

atom_style full # can be used for CG or molecular bodies1085

# --------------------------------- VARIABLES -----------------------------------

# System Parameters

variable sigma equal 1.0 # sigma in lj potential

variable epsilon equal 1.0 # sigma in lj potential1090

variable cut equal 1.12246 # cutoff in lj potential (lj distance units)

variable temp equal 0.5 # temperature (lj temperature units)

variable K equal 10*v_temp/v_cut/v_cut # spring constant (force/distance units)

variable r0 equal 2 # equilibrium distance (lj distance units)

variable seed equal 5 # random seed value1095

variable name string NVE-temp-${temp}_K-${K}_r-${r0}_s-${seed}

# Output File Names

variable traj string ${name}-traj.dump

variable rb_info string ${name}-info.dat1100

variable sim_log string ${name}-sim.log

variable input_log string ${name}-input.log

log ${input_log} # start a new log file to log input parameters/lammps response

1105

# Simulation Parameters

variable log_freq equal 100 # log frequency

variable runsteps equal 10000000 # N of steps to run for

variable timestep equal 0.00001 # timestep

1110

# -------------------------- ATOMS/MOLECULE DEFINITION --------------------------

read_data hex.conf # Add a hexagon molecule

read_data hex.conf add append shift 4.0 0.0 0.0

# Add a second identical molecule, shifted so it doesn’t overlap

1115

# Group ID can be used in other commands, including fix, compute, dump or velocity

group hex_1 id 1 2 3 4 5 6 7 # label the atoms 1-7 as a group

group hex_2 id 8 9 10 11 12 13 14 # label the atoms 8-14 as another group

# -------------------------- INTERATOMIC POTENTIALS -----------------------------1120

# Pairwise potentials

pair_style lj/cut ${cut} # lj truncated - cutoff at 1.12 sigma

pair_coeff * * 1.0 ${sigma} # epsilon | sigma - * * means all atoms interact with each other

fix hex_spring_NVT hex_1 spring couple hex_2 1.0 0.0 0.0 0.0 ${r0}

# adds harmonic spring between rigid bodies1125

# f_hex_spring[1,2,3,4] = force_x, force_y, force_z, magnitude of the force

################## SYSTEM INITIALISATION WITH AN NVT SIMULATION ##################

# -------------------------------------------------------------------------------1130

# Add energy to the system by running an NVT simulation, use a very stiff spring to

# keep rigid bodies close. Then, remove (unfix) the thermostat and spring before

# initialising and running the more important NVE simulation

# -------------------------------------------------------------------------------

1135

# System fixes: spring and nose-hoover thermostat

fix hex_spring_NVT hex_1 spring couple hex_2 1 0 0 0 ${r0} # adds harmonic spring between RBs

fix rigid_1_NVT hex_1 rigid/nvt/small molecule temp ${temp} ${temp} 1.0 tparam 10 3 3

fix rigid_2_NVT hex_2 rigid/nvt/small molecule temp ${temp} ${temp} 1.0 tparam 10 3 3
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1140

# Basic output to terminal

thermo ${log_freq}

thermo_style custom step f_hex_spring_NVT[*] temp pe ke etotal

# Set temperature and run simulation1145

velocity hex_1 create ${temp} ${seed}

run 0

velocity all scale ${temp}

run 100000

1150

unfix rigid_1_NVT

unfix rigid_2_NVT

unfix hex_spring_NVT

################################ NVE SIMULATION #################################1155

# ------------------------------- SYSTEM FIXES ----------------------------------

fix rig_hex_1 hex_1 rigid/nve/small molecule

fix rig_hex_2 hex_2 rigid/nve/small molecule

fix hex_spring hex_1 spring couple hex_2 ${K} 0.0 0.0 0.0 ${r0} # spring between RBs

# f_hex_spring[1,2,3,4] = force_x, force_y, force_z, magnitude of the force1160

# ----------------------------- PROPERTY COMPUTES -------------------------------

# Calculate rigid body properties - local data, so must be outputted using dump ... "local"

compute com_1 all rigid/local rig_hex_1 xu yu zu # RB1 unscaled center of mass x, y, z

compute com_2 all rigid/local rig_hex_2 xu yu zu # RB2 unscaled center of mass x, y, z1165

compute vel_1 all rigid/local rig_hex_1 vx vy vz # RB1 center of mass velocities vx, vy, vz

compute vel_2 all rigid/local rig_hex_2 vx vy vz # RB2 center of mass velocities vx, vy, vz

compute q_1 all rigid/local rig_hex_1 quati quatj quatk quatw # RB1 quaternion components

compute q_2 all rigid/local rig_hex_2 quati quatj quatk quatw # RB2 quaternion components

compute av_1 all rigid/local rig_hex_1 omegax omegay omegaz # RB1 angular velocities1170

compute av_2 all rigid/local rig_hex_2 omegax omegay omegaz # RB2 angular velocities

compute am_1 all rigid/local rig_hex_1 angmomx angmomy angmomz # RB1 angular momenta

compute am_2 all rigid/local rig_hex_2 angmomx angmomy angmomz # RB2 angular momenta

compute i_1 all rigid/local rig_hex_1 inertiax inertiay inertiaz # RB1 inertia

compute i_2 all rigid/local rig_hex_2 inertiax inertiay inertiaz # RB2 inertia1175

# ----------------------------- CONFIGURE OUTPUTS -------------------------------

thermo_style custom step f_hex_spring[*] temp pe ke etotal

dump 1 all custom ${log_freq} ${traj} id type x y z

dump 2 all local ${log_freq} ${rb_info} c_com_1[*] c_com_2[*] &1180

c_vel_1[*] c_vel_2[*] c_q_1[*] c_q_2[*] c_av_1[*] c_av_2[*] &

c_am_1[*] c_am_2[*] c_i_1[*] c_i_2[*]

log ${sim_log} # create new log file with simulation information only

# ------------------------------ RUN SIMULATION ---------------------------------1185

timestep ${timestep}

run ${runsteps}

print "Simulation stored with name: ${name}"

1190

##################################### NOTES #####################################

# Each new simulation must be run in a new directory
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