
MONTE CARLO SIMULATION OF

DNA ORIGAMI SELF-ASSEMBLY
Notes: Jakub Lála (jl24018@ic.ac.uk)

Model: Alexander Cumberworth (alexandercumberworth@gmail.com)

DNA ORIGAMI

DNA nanotechnology has its origins all the way in the 1980s, when

it was first proposed that the double helix structure may be used as

a construction material for the assembly of geometrically defined

objects with nanoscale features. However, the invention of the DNA

origami scaffold-based method comes only in 2006 with Rothemund’s

ground-breaking article in the Nature.

In DNA origami, a single-stranded DNA strand referred to as

scaffold is folded using short oligonucleotides called staples. It is

a bottom-up assembly, meaning the construction components inherently

contain the information of the folded target structure and thus the

reactants self-assembly given only sufficient time and conditions.

Below in the figure, a schematic of the assembly is shown.

One of the applications of DNA origami may be a viral detection

mechanism. If one knows the exact gene sequence of a virus, one may

design staples in such a way that given specific conditions, the

virus’ gene information folds. The folded origami may then be detected

using microscopy, therefore, identifying the presence of the virus in

a patient’s blood.

ALEX’S MODEL

The model comes from Alex’s article and thesis project. Its aim

is to find a compromise between the physical accuracy of oxDNA models,

where individual nucleotide molecules are being simulated leading to

demanding computation, and the efficiency of statistical models,

where, however, the lack of explicit geometry of the system results

in strong assumptions.

https://www.nature.com/articles/nature04586
https://www.nature.com/articles/nature04586
https://arxiv.org/abs/1810.09356
https://drive.google.com/file/d/1P6_GLgOpOYYgtb7yB8lYJRvZpx_6EHcJ/view

Particles on a lattice

The model is designed to represent parts of the single-stranded

DNA strands as particles on a simple cubic lattice with 90 degrees

between helical axes. This approximation has a good precedent in

previous studies of DNA bricks and nucleation kinetics.

Particles are defined to be binding domain units of several

nucleotides. Currently, the model supports a HalfTurn and

ThreeQuarterTurn domain classes, where the class description is based

on the fraction of a turn remaining after an integer amount of whole

turns that make up the double helix. For example, a 16-nucleotide

binding is composed of 1.5 turns of the helix structure, hence that

would be defined as the half-turn domain type. Note that larger binding

domains must be integer multiples of the smallest domain unit, as well

as that domains with one or two residue nucleotides may be approximated

to an integer binding domain as the relative length difference is

small.

On a single lattice point, the occupancy may either be 0

(unoccupied), 1 (unbound) or 2 (bound or misbound), where the number

indicates how many binding domains (particles) are present. A bound

state is defined only when the domains are fully complementary in

terms of their gene sequence. The figure below shows a schematic of

transformational description between the double helix and particle

representation.

To account for the restrictions imposed on the DNA chain by the

double helix, two types of vectors are defined for each particle –

orientation vector and next-binding domain vector, both shown on the

figure above. The need for such describing tools is to set requirements

that allow crossovers between strands to occur only at certain

intervals, as well as transmit information on the current phase of

the helix. Directions are defined to be positive for a scaffold chain

going from a helical position of 5’ to 3’, whilst for a staple chain

it is from 3’ to 5’, as shown on the figure.

The orientation vector points orthogonally from the helical axis

to the position of the strand at the end of the helix in the current

binding domain. In the scaffold at the top of the figure, when going

in the positive direction as defined above, one sees that at the end

of the first binding domain, the scaffold is at the top, and hence

the scaffold orientation vector for that binding domain must point

upward. Note that in an unbound state, the direction of the vector is

uniformly distributed. Also note that in a (mis)bound state the sum

of these vectors must add up to zero, i.e. they must point in the

opposite directions.

The next-binding domain vector connects two binding domains

pointing to the next domain along the given chain. This vector is

crucial for implicitly resolving the helical axis of a domain, as no

explicit helical axis vector is defined. For a single pair of binding

domains (on a single lattice site), the helical axis remains to be

constrained only in a plane rather than an actual single direction.

Moreover, only contiguous binding domains are allowed on adjacent

lattice sites.

Grand-canonical ensemble

A single scaffold is being simulated in the grand-canonical

ensemble, i.e. the chemical potential of the staples is held constant,

whilst the fluctuating number of staples is observed. That means that

only the staples (mis)bound to the system are of interest.

Although staple-staple binding is not common in the relevant

simulated temperatures, as the staples are not designed to bind with

each other, the model allows for staple-staple binding due to a

potential local staple concentration increase at a scaffold.

Nevertheless, the staples must still be (mis)bound to the scaffold –

either directly or indirectly via another staple bound to the system.

The key parameter is the availability of the staples to the

system, which is determined by the initial staple concentration,

binding state of staples on the scaffold and binding of staples to

other staples. Also note that in actual experimental DNA assembly

protocols, the staples are in excess, hence the free staple

concentration is assumed to be constant regardless of the staple

binding states.

The model takes only a few input parameters – temperature, salt

concentration (in which the self-assembly takes place), staple

concentration and stacking energy (see stacking term in the

Hamiltonian section below)

Hamiltonian

The Hamiltonian, energy function of the system, considers the

potential energy of the system, which has bonding, stacking and steric

contributions.

The bonding term comes from the hybridization free energies

associated with (mis)bound states using the SantaLucia NN (nearest

neighbour) model. This model also in a coarse-grained manner accounts

for the entropy of hybridizing two molecules. Moreover, this model

has to be corrected using the mean field correction as in to adjust

for the model’s inadequacy in terms of entropic deviations. This comes

from the investigation of the same system but with differently sized

binding domains, which yielded contradicting results. Note, however,

that one may also adopt a uniform or sequence-specific definition of

the hybridization energy.

The stacking energy is to some extent simplified but allows for

both stacked and kinked configurations. Formally, kinked

configurations were disallowed which showed very difficult sampling,
where the system had to be rearranged through domains unbinding and

rebinding, increasing the amount of simulation steps.

Monte Carlo

Monte Carlo (MC) simulations are fundamentally attempting to

randomly sample a given phase space with a probability distribution

function to estimate a quantity of interest. Those are thermodynamic

or kinetic properties defined as averages over the configuration space

of a given system as a function of the control variables of the

selected statistical ensemble. In this model, it is the chemical

potential of the staples (more specifically their concentration) that

we set as the control variable, effectively fixing it.

The phase space is usually sampled by importance sampling (i.e.

the Metropolis algorithm), where a random trial configuration is

generated and is accepted according to some acceptance probability.

Such acceptance probability must be devised in such a way that the

Markov chain of independent conformations obeys detailed balance.

In order to efficiently sample the configuration space of the

given system, advanced biasing schemes must be employed in order to

steer sampling in the relevant regions of the phase space with a

significant contribution to the result.

The simulation may be run in several modes – constant temperature

(traditional Monte Carlo simulation), parallel tempering (or REMC)

and umbrella sampling.

https://pubmed.ncbi.nlm.nih.gov/15139820/
https://pubmed.ncbi.nlm.nih.gov/15139820/

Parallel Tempering

As low temperature simulation setups may become trapped in a local

minima in the phase space, their sampling of the phase space may be

quite challenging and demanding on a relevant timescale. On the other

hand, high temperature simulations are able to sample large volumes

of the phase space. Therefore, a method has been developed to allow

for low temperature simulations to access a representative region of

the phase space by permitting information exchange between simulations

at various temperatures.

The method is replica exchange MC simulation (REMC or parallel

tempering) and it is based on the idea of simulating multiple replicas

(copies) of a simulation simultaneously. These different replicas

differ only with respect to some simulation control parameter, most

commonly the aforementioned temperature. These variables are referred

to as exchange variables.

Between a random pair of these replicas a random exchange swap

attempt occurs at a random step interval, provided that the replicas

are adjacent with respect to the exchange variable. An accepted

exchange leads to a complete exchange of their configurations. This

model specifically performs an exchange attempt at pre-defined step

interval, alternating between an exchange of even and odd pairs of

replicas. Although this does not obey detailed balance, the algorithm

still obeys total balance and so is valid.

Note that in this model, when temperature is chosen as the

exchange variable, the chemical potential of the staples must also be

exchanged, yet as it is temperature dependent, the REMC is still

defined by a single exchange variable. Note, however, that two-

dimensional variations of REMC may be used. The model already

implements this possibility, where the exchange variables may be

whichever of the following – temperature, stacking energy or system

biases.

By running on a community cluster, one may take advantage of the

CPU and run the replicas parallel. To optimise, one must ensure that

the highest temperature simulated is high enough to ensure the volume

sample is large enough to access all relevant regions of the phase

space, as well as the number of replicas should be chosen such that

swapping occurs between all adjacent replicas (see paper for more in

depth optimisation suggestions).

https://doi.org/10.1039/B509983H

Move Types

Due to specific and strong interactions of this model, efficient

sampling of near-assembled states is quite difficult using traditional

MC methods for polymeric systems.

Special schemes for re-growing domain units is introduced,

resulting in three possible regrowth variants that may be used:

• symmetric – uniform probability of choosing any position

difference and orientation vector, meaning the classic canonical

acceptance criterion is applied

• configurational bias (CB) – essentially Rosenbluth sampling,

where bias is introduced with respect to the associated energy

change between new and old configuration trials

• recoil growth (RG) – growth of each binding domain selects a

configuration with a uniform probability and is either labelled

open (can and is used for the successive binding domain) or

closed (cannot be used and another is proposed up to a total of

kmax trials); if no open configurations occur, growth recoils to

the most recent binding domain, testing new open configurations;

recoiling can occur lmax times or until all binding domains being

grown are unassigned (closed) and thus the move is rejected

Any of these re-growth variants may be used in any of the steps,

although it is always mentioned what type of biasing re-growth variant

is employed in the code.

The figure above shows the four different move types used in the

model. This figure will be referred to as the example figure later

on.

Orientation Vector

The most simple move type, where a random orientation vector has

its direction changed according to the following:

• select a random binding domain

• generate a new orientation vector with uniform probability

For unbound domains, the change in energy due to the orientation

vector change is zero, hence acceptance probability is always unity

and the move is accepted. For (mis)bound domains, the partner domain’s

orientation vector must be also modified to ensure that their sum

remains zero. Therefore, the additive inverse of the former domain’s

orientation vector is used for the partner domain.

In the example figure, the orientation vector for scaffold

domain 2 is changed from downward direction to upward direction.

Staple Regrowth

The next two move types only concern themselves with the staples.

The regrowth move regrows a random staple according to:

• select a random staple with uniform probability

• select a random (mis)bound domain of the staple

• regrown the staple from the domain in both directions using CB

If no staples are present the move is rejected immediately. Also, if

a connecting staple is selected that would after removal lead to a

network of staples not connected to the system (to the scaffold), then

the move is also automatically rejected.

In the example figure, the staple is re-grown from binding

domain 1:1, hence that one remains constant between the configurations

whilst staple domain 1:2 changes its position.

Staple Exchange

This move types considers removing and adding different staple

types by:

• decide whether to insert or delete a staple

• select a random staple type

• insert/delete accordingly with symmetric staple growth

As the traditional symmetric method of regrowth is used, the

acceptance probability follows the usual grand-canonical acceptance,

where the pre-factor deals with the number of ways a staple may be

inserted compared to the ways it may be removed.

In the example figure, a staple is inserted on scaffold domain 5

with staple domain 2:1 being the one chosen to (mis)bound to the

scaffold.

Scaffold Regrowth

The last move type concerning the scaffold is the most complex.

The idea is to sample scaffold conformations independently from

binding states of staples. This is because a traditional scaffold

regrowth approach of near-assembled states would rarely propose a

trial configuration of as many bound domains. As the trial states

would commonly be less assembled and would thus have a higher energy

(less favourable), the move would almost always result in a low or

zero probability, therefore, being rejected.

The staple binding state in this move is thus held constant, i.e.

the binding state of staples is altered only in the Staple Regrowth

and Staple Exchange move types. Separating the scaffold move type from

the rest improves the acceptance rate but also allows for an easier

implementation of new move types. One may view the system as a network,

where (mis)bound domain pairs act as nodes. By keeping the staple

states constant, the network topology remains constant as well, and

thus this move type can be referred to as a conserved topology move.

Additionally, the regrowth of the scaffold will be done in a

similar fashion to a fixed-end CB regrowth. Such scheme allows

polymers to grow to a predetermined endpoint by biasing the selection

of each polymer unit configuration by the number of ideal walks from

the trial polymer unit’s position to the endpoint. In layman’s terms,

certain endpoint constraints will be defined by the scaffold length,

the original configuration, the position of staples on the scaffold,

etc. The regrowth of the scaffold is then limited to always comply to

these constraints. An example would be when the remainder of the

scaffold to be regrown must circle back to a staple to which the

scaffold end was bound in the former configuration. At that point,

the scaffold is quite constrained to let us say grow in the shortest

possible distance to the staple, if the segment to be still regrown

has become sufficiently short.

This idea may be extended to multiple endpoints per a segment of

the scaffold being regrown. Moreover, the growth of multiple segments

of a scaffold on possibly multiple chains may be established. Each

segment can then have its own set of endpoint constraints. For a

binding domain that acts as an endpoint, but must also be grown, the

endpoint constraint is defined to be inactive until the associated

configuration of that binding domain has been determined.

At that point, the number of ideal walks is no longer valid for

biasing as they could differ for old and new configurations, hence an

indicator function is set up – unity if ideal walks remain and zero

otherwise. (Note that in the input files of the model an archive file

for the number of ideal walks is still used, although the actual code

only considers if any ideal walks remain.) Moreover, another indicator

function is employed to prevent new pairings of binding domains -

unity for unoccupied lattice, occupied by another binding domain of

the chain being grown or the position of an active endpoint on the

segment being grown, and zero otherwise.

Also note that misbinding between domains on the same chain is

allowed, as Staple Exchange and Staple Regrowth move types do not

sample such states involving scaffold domains misbinding with

themselves.

This move type can be done for a single segment or multiple

segments and generally goes as follows:

• select a single segment or multiple segments

o select a random seed binding domain

o select a random segment length and direction

o keep adding binding domains to the seed binding domain

until

▪ the selected segment length is reached OR

▪ the end of the chain is reached (if at that point the

selected segment length has still not been reached,

start adding binding domains from the opposite

direction of the seed binding domain)

• staples in the segments are determined to either be regrown or

acting as endpoints based the staple position

o internal staples – involved in the segment to be regrown

and thus are regrown together with the scaffold (note that

these staple domains are always regrown before re-growing

the scaffold domains whenever a (mis)bound staple domain

on the scaffold is reached)

o external staples – not involved in the segment to be

regrown and thus remain in their old configuration state

with those bound to the scaffold acting as endpoints

An example of a single segment scaffold regrowth move is shown in

the figure below. The segment to regrow is chosen to be the entire

scaffold, where the seed binding domain is domain 1. Initially, the

seed domain is grown. Afterwards the staple domains must be re-grown

first before domain 2. Then the domain chain is being successively

grown. When scaffold domain 5 is grown, there are only two ways the

scaffold could grow to satisfy the endpoint constraint – binding

scaffold domain 8 with staple domain 1:2.

The multiple segment variation of this move type is designed so

that the selection of binding domains enables jumping between scaffold

domains at points where two scaffold domains are adjacent through a

linking staple. Other than that, the approach is very similar to the

single segment variation.

Whenever a binding domain is added to a segment for regrowth and

is bound to a staple, then if there is another scaffold domain that
is neither already selected in the segment, nor contiguous with a

scaffold binding domain already in the regrow segment, it is added to

a queue of potential segment seed binding domains. Once the selection

of domains is terminated for a specific segment (by reaching that

particular segment’s length) and the maximum total number of binding

domains has not been reached, a new segment is created using the

binding domain seed from the queue with the direction chosen as with

the initial segment. If that one terminates, another segment from the

same binding domain seed is started but in the opposite direction.

This continues until complete termination when the maximum number of

binding domains is reached. Segments are then regrown in the order

with which they were selected.

In the figure below, an example of the multi-segment regrowth is

shown. Initially, the maximum number of binding domain to be selected

is chosen to be seven. Then the first seed binding domain is randomly

chosen to be scaffold domain 5, for which the selection direction is

chosen to be forward and the maximum segment length is chosen to be

three. While scaffold domains 6, 7 and 8 are added to the first

segment, scaffold domain 2 is added to the queue for potential next

seed binding domains. Once the first segment is completely selected,

the seed is used to begin a new segment at scaffold domain 2. The

negative direction is chosen and a segment length of two is selected,

resulting in scaffold domain 1 and then 3 to be added (as the other

direction for the seed is used after the chain end is reached).

Although the maximum number of binding domains was not reached, there

are no more potential seeds in the queue, hence the re-growth then

proceeds sequentially.

USING THE CODE

The DNA model code was written by Alexander Cumberworth and is

originally available in his GitHub repository. There is also a GitHub

repository made by Jakub Lála that contains some additional scripts

for the specifics of his investigation – the relative importance of

staples on the stability of the assembled structure.

Installation

After cloning the repository, two applications have to be made

using the relevant Makefiles - latticeDNAOrigami and calc_num_walks

(located in scripts/ideal_random_walks). The former is the main

application, whilst the latter creates an archive file of ideal random

walks used for the scaffold regrowth move type.

There are the library dependencies necessary for compiling and

running the program: boost, JSONcpp, openmpi, make, gcc, zlib. Note

that the Makefiles may include the mpicxx command, which is not

available in newer versions of openmpi. Also check that all relevant

objects and library are being linked the Makefiles, as well as that

the build/ and bin/ are created prior to running the Makefile, if an

error is being thrown.

Running the simulation

The simulation is run by using the command

• latticeDNAOrigami -i [configuration file]

or

• latticeDNAOrigami -i [configuration file] > [output file]

depending whether one wants to output into the terminal or into an

output file respectively.

Moreover, one may list all the input parameters by the command

• latticeDNAOrigami -h

Running on the cluster

Running the code in the command line of the terminal requires for

the terminal to remain open, which is not quite useful when trying to

run simulations for a few hours. One must thus use the SLURM batch

job workload manager.

There are prepared template shell scripts that can be run with

either SLURM or PBS. Note that the templates have to be filled in with

the respective directories, walltime, etc. This can be edited manually

or the shell scripts for creating inputs may be used (e.g.

create_serial_inputs.sh).

An example of the command for running the shell script for SLURM

follows as:

https://github.com/cumberworth/LatticeDNAOrigami
https://github.com/jakublala/LatticeDNAOrigami
https://github.com/jakublala/LatticeDNAOrigami

• sbatch serial_template_slurm.sh

One may check the status of the job by using:

• squeue

Also note that the error and output files are defined to be *.e

and *.o files respectively.

If one decides to cancel his job, he may use the following command

with the respective job ID:

• scancel [Job ID]

Input Files

The list of the key input files goes as follows:

• .inp configuration file

o includes all the input simulation parameters

o used as the input file when executing the simulation

o all the input parameters may be printed out by

latticeDNAOrigami -h command line help option

• .json system file

o includes all the information on the binding domains of the

scaffold and the staples

• .json move type file

o defines the move types used and their frequencies

• .json bias functions file

o defines the bias functions for whichever order parameter

• .json order parameter file

o defines the order parameters to be extracted from the

simulation (note: the output of order parameters is

specified as an parser argument in the .inp file)

• .arch number of ideal random walks file

o stores the number of ideal random walks of the scaffold

for the scaffold regrowth move

Simulation Types

The code enables for 4 different types of simulations:

• constant_temp – Constant Temperature

o most simple type, where a single temperature is chosen,

at which the simulation is run

o only a single parameter:

▪ number of MC steps [ct_steps]

• annealing – Annealing

o temperature is linearly being increased during the

simulation

o the simulation starts at a high temperature and is

then being reduced according to the parameters

o it seems as there are no other output files except for

the usual .out

o parameters:

▪ maximum temperature [max_temp]

▪ minimum temperature [min_temp]

▪ temperature interval [temp_interval]

▪ number of MC steps per temperature

[steps_per_temp]

• parallel_tempering – Parallel Tempering or REMC

o replicas of different exchange variables are being

simultaneously simulated

o a prefix is used for the type parameter to define the

exchange variable for the swaps between replicas

▪ parallel_tempering – a general 1D REMC

▪ t_parallel_tempering – temperature 1D REMC

▪ ut_parallel_tempering – chemical potential

multiplier and temperature 2D REMC

▪ hut_parallel_tempering

▪ st_parallel_tempering – stacking energy

multiplier and temperature 2D REMC

▪ 2d_parallel_tempering – a general 2D REMC

o note that the exchange variable for chemical

potential, stacking energy and system biases is a

multiplier rather than the absolute value

o parameters:

▪ simulation temperatures [temps]

▪ number of replicas [num_reps]

▪ [swaps]

▪ [max_pt_dur]

▪ [exhance_interval]

▪ [chem_pot_mults]

▪ [bias_mults]

▪ [stacking_mults]

▪ [restart_swap_file]

• umbrella_sampling – Umbrella Sampling

Order Parameters

The order parameters to be extracted are defined in the .json

file and if specified as an input parameter, they will be print in

the .ops output file.

The definition of the parameters in the .json file is based on

these parameters:

• label – complete name of the order parameter

• tag - used for defining which order parameters to output in the

input file when starting the simulation

• type - defines the order parameter type inside the code

o Dist – distance between two domains

▪ requires chain1, domain1, chain2 and domain2

specifications

o AdjacentSite – boolean whether domains are next to each

other (0 – not adjacent; 1 – adjacent)

▪ requires chain1, domain1, chain2 and domain2

specifications

o Sum – sum of other order parameters

▪ requires a vector string of order parameters

o NumStaples – number of staples

o NumStaplesType – number of a specific staple type

▪ requires staple type specification by its identity

from the JSON file

o StapleTypeFullyBound – boolean whether a specific staple

type is fully bound (only once by all binding domains)

▪ requires staple type specification by its identity

from the JSON file

o NumBoundDomainPairs – number of bound domain pairs

o NumMisboundDomainPairs – number of misbound domain pairs

o NumStackedPairs – number of stacked pairs

o NumLinearHelices – number of linear helices

o NumStackedJuncts – number of stacked junctions

• level

Output files

All of the type of files below are produced as a result of the

simulation, where the filebase is defined by the output filebase given

in the .inp input file. Note that the *_vmd versions of these files

describe the final configuration.

• .counts – key order parameters evolution

o [MC step] [Bound Staples] [Unique Bound Staples] [All Bound

or Misbound Domain Pairs] [Fully Bound Domain Pairs]

[Misbound Domain Pairs]

• .ene – system’s energy and bias evolution

o [MC step] [Total Energy] [Enthalpy] [Entropy] [Stacking

Energy] [Bias]

• .moves – statistics and details of move type acceptances

• .ops – order parameters evolution

o header - [ops1], [ops2], […]

o body - [MC step] [ops1] [ops2]

• .ores – orientation vectors evolution

o [orientationVector1] [orientationVector2] […]

o each line describes a single logged MC step

• .out – general output file showing simulation progress

• .staples – staple count in the system

o [MC step] [# of staple1] [# of staple2] […]

• .staplestates – staple states with respect to their state in the

final assembled structure (0 – misbound, 1 – fully bound)

o [MC step] [staple1] [staple2] […]

• .states

• .trj – trajectory file containing configuration at the specified

MC step

o [MC step]

[scaffold identity] [unique ID]

[domains (x, y, z)]

[orientation vectors (x, y, z)]

[staple identity] [unique ID]

[domains (x, y, z)]

[orientation vectors (x, y, z)]

[…]

o can be used to restart the simulation from whichever point

in the trajectory

o this becomes helpful if there is a crash during a

simulation or not enough sampling was achieved

o one may use the trajectory to restart the simulation from

a particular configuration and not waste time re-simulating

what has already been simulated

• .vcf – position of each domain used for VMD visualisation

o [“timestep”]

[x1] [y1] [z1]

[x2] [y2] [z2]

[x3] [y3] [z3]

[…] […] […]

[“timestep”]

[x1] [y1] [z1]

[x2] [y2] [z2]

[x3] [y3] [z3]

[…] […] […]

[…]

• .vsf – identification and type of domains for VMD visualisation

Visualisation

It was recommended to use VMD rather than the LaTeX library Tikz

by the author of the code. Consider the .tcl files in /scripts/vmd/.

One has to first, however, download the VMD from the official website.

For the download, it is necessary to register on the website.

• liborigami.tcl – specific library for visualisation of DNA

origami from this model

• pipe.tcl – live visualisations

o input arguments – [VMD file directory] [Filebase Name]

[Staple Length]

• view_origami_coors.tcl – visualisation after simulation

completion

o set the variables inside the VMD Tk Console

▪ libdir – directory of the library

▪ filebase -

▪ system – name of the simulated system

▪ staplelength – length of staples in the units of

binding domains (e.g. staple length = 32 / 16 = 2)

https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD

To visualise live as the simulation is running, one has to run

the pipe.tcl script by using the bash command:

• vmd -e $(libdir)/pipe.tcl -args $(libdir) $(filebase)_vmd

$(staplelength)

where $(libdir) is the directory that the vmd scripts are located,

and $(filebase) includes the directory that you output the files to.

The filebase_vmd files are used for live viewing, where the

create_vmd_instance and vmd_pipe_freq input parameters launch VMD for

live viewing and define the frequency of rewriting the vcf and vsf

files (i.e. the frequency of updating the live visualisation)

respectively.

To visualise after the simulation has finished, one can run the

view_origami_coors.tcl script in the VMD Tk Console accessible from

[Extensions >> Tk Console]. After setting the four variables

necessary, the .tcl script has to be sourced. Note that for a serial

simulation, the filebase and system variables are the same. When

sourced, one may use the VMD control panel to play through the

evolution of the simulation, adjusting speed, camera angle, projection

settings, etc.

The visualisations’ theme is identical to the one in Alex’s paper

and thesis. The colour description goes as follows:

• particles

o veal – unbound scaffold domain

o orange – unbound staple domain

o dark green – bound domains

o purple – misbound domains

• vectors

o yellow – scaffold next-binding domain

o blue – staple next-binding domain

o light green – staple orientation

o pink – scaffold orientation

The figure below shows the model description from the paper for

completeness and an example of the VMD visualisation respectively.

Analysis

There are several analysing Python scripts included in the

/scripts/analysis folder. They al take in different arguments, hence

one should always use the –-help to see the necessary inputs.

Note that some of the arguments are not necessary for some

simulation setups. Also, apart from the usual modules (numpy, scipy,

matplotlib, pandas), pymbar and origamipy are required, the latter

being a specific package made by Alex. Note that pymbar only supports

up to Python 3.6, thus it is recommended to use a Python 3.6

environment. The origamipy package may be installed by using the

setup.py and running

• python setup.py develop

The analysis script are described as follows:

• calc_domain_occupancies.py – calculates scaffold domain

occupancies for a given simulation set

o I am not sure what JSON file should be the input…

• calc_end-to-end_distance.py – calculates end-to-end distance

evolution into a file

o system_filename [snodin_unbound.json]

o traj_filename [test_const.trj]

o out_file [end-to-end-distances_test_const.txt]

• calc_marginalized_expectations.py – calculates the mean

o system_filename [snodin_unbound.json]

o filebase

o input_dir

o output_dir

o temp

o staple_m

o stack_ene

o tag

o assembled_op

o staple_types

o scaffold_domains

o –-reps

o --temps

• calc_metlting_temp_lfes.py

• calc_numfullyboundstaples.py

• calc_radius-of-gyration.py

• calc_scaffold_distances.py

• calc_scaffold_rmsd.py

• extract_configs.py

• perform_stack_decorrelation.py

Plotting

Plotting Python scripts are prepared in /scripts/plotting using

the matplotlib package. Descriptions of each follows:

• plot_all-lfes.py

• plot_barrier-vs-sysvar.py

• plot_barrier-vs-temp.py

• plot_combo-lfes.py

• plot_domain-frequencies.py

• plot_domain-melting-temps.py

• plot_frequencies.py

• plot_means.py

• plot_melting-lfes.py

• plot_ops_series.py

• plot_single-staple-curves.py

INVESTIGATION

An undeveloped investigation of the relative importance of

individual staples was started by Jakub Lála.

Initially, a single-removal (SR) type of simulation was run, where

a single staple type is removed from the input parameters and thus is

not inserted into the system. The pipeline for creating the input

files was developed using Python scripts and is located on Jakub’s

GitHub forked repository in scripts/investigation/single-removal/:

• create_sr-seq.py – considers the input sequence file for the

staples and iteratively creates sequence files, where a single

type is removed

• create_sr-jsons.py – considers the input sequence staple and

scaffold files and creates the JSON input file of the system for

all simulation setups

• create_sr-input-configs.py – creates the .inp input files for

all simulation setups according to the provided template

• create_sr-slurms.py – creates the .sh SLURM files necessary for

cluster execution for all simulation setups

• create_sr-folders.py – prepares all the necessary files for all

simulation setups into a sim_folders/ folder

• create_sr-all.py – runs all of the scripts above successively

Note that for proper execution one has to include the necessary input

files in the inps/ folder:

• (bias_functions.json)

• input_template.inp

• movetypes_default.json

• num_walks.arch

• ops_default.json

• serial_template_slurm

• snoddin_scaffold.seq

• snoddin_staples.seq

The files above are examples, thus if one wants to use the scripts

with other DNA origami shapes other than the Snoddin tile, or wants

to use different move type frequencies, one has to adjust the filenames

accordingly in the script.

Taking the Snoddin example shown below, 13 different simulation

setups were performed, where a different staple type was missing in

each and one simulation setup had all of the staple types present.

The figure below also colourfully groups staple types of similar

characteristic, more specifically melting point. This comes from

Alex’s paper, where he studies the mean average occupancy for

individual staple types in this Snoddin tile by performing REMC

simulation. By analysing this order parameter for various

temperatures, he was able to find the transition and identify it as

the melting temperature. Various melting temperatures of staple types

then refer to various degrees of geometrical restrictions on the

system.

More specifically, the staple type categories are:

• same helix - staples 1 and 12 => most stable, highest T melt

• span-2 - staples 3, 6, 9

• span-0, inside span-2 - staples 4, 7, 10

• span-0, outside span-2 - staples 2, 5, 8, 11 => lowest T melt,

thus most geometrically and physical scaffold restrictions

These are listed in the order of decreasing temperature, and thus

increasing scaffold geometry restriction.

It is unclear which order parameter to use for quantifying the

extent of assembly. In this specific case, it was proposed by Alex to

use the number of stacked domain pairs, as the fully assembled

structure in a planar form should maximize the number of stacked

pairs.

Results of an initial simulation are given below:

Simulation Details: 330 K, 10 000 000 MC steps, 10 000 MC step logging

frequency, constant temperature, stacking energy = 1000

From the plot, staples 4, 7 and 10 seem to be crucial as their

removal causes the greatest decrease in the number of stacked number

pairs. In Alex’s paper, these impose great physical restrictions, yet

they are not the most restrictive, i.e. they do not have the lowest

melting point. Notice that in this plot the number of stacked domain

pairs for a system, where all staples are present was not actually

simulated and was assumed to be 12. Moreover, the code for some reason

prints out these values as negative rather than positive.

Also note that the colours of the different simulation setups are

given accordingly to the colours as defined above by the categories

of staple types. Although it may seem as though characteristically

similar staple types have a similar effect on the order parameter

studied, this is clearly not the case. The only confident distinction

one can observe is for the aforementioned staples 4, 7 and 10, which

clearly all show the least number of stacked domain pairs.

The simulation setup was revised. The system will all staples

present was also included, as well as the stacking energy and the

number of fully bound domain pairs was analysed. The results are given

in the plots below:

Simulation Details: 330 K, 30 000 000 MC steps, 1000 MC step logging

frequency, constant temperature, stacking energy = 1000

Firstly, notice that the values for the system with all staples

present is now actually represented by a simulation. Moreover, the

error bars are also included. It is clear that the large uncertainty

in the number of stacked domain pairs may explain why the simulation

setup with staple type 2 missing shows a more stacked configuration

than the system with all staples present, as this is not what we would

expect to see.

The number of fully bound domain pairs does not seem to be a good

indicator of the extent of the assembly to the target structure in

this specific example, as this order parameter is nearly always 22

(the maximum we would expect) for all setups. Only for simulation

setups with missing staple type 1, 8, 9 and 10 have a slightly lower

values than 22.

Looking at the system energy, there seem to be some deviations

between the various setups, but a closer look is necessary to see any

clear indications:

The system energy deviations do not seem to be giving a result

that would agree with the number of stacked domain pairs, hence at

least one of these is not the correct way to access the extent of

assembly. Nevertheless, the error bars are fairly wide and thus

presumably the simulation should be run for more MC steps.

The investigation was then expanded to analyse double-removal

simulation setups, for which a similar set of scripts was developed.

The results are displayed in the following pages.

Simulation Details: 330 K, 10 000 000 MC steps, 1000 MC step logging

frequency, constant temperature, stacking energy = 1000

Notice that only 10 million steps were simulated for each setup,

which is much less compared to the previous SR investigation. It is

suggested that this should be re-run with more steps for statistically

more meaningful results.

Firstly, looking at the system energy results, one may see that

there are certain staple removal combinations that show a less

negative energy. With some careful examination, some of these

combinations such as 4 with 5 or 4 with 10, could be argued for as

they form the key turning points (or sides) of the origami shape.

Nevertheless, the removal of 1 with 8 or 7 with 12, should not be

expected to have such a different energy, as staples 1 and 12 have

both domains on the same chain, and thus should not be that important

for the geometrical restrictions of assembling.

Secondly, looking at the number of stacked domain pairs, there

are huge fluctuations, hence it is probably wise to not comment on

these. The thing that only needs to be stressed again is therefore,

that advanced sampling methods should be employed to obtain meaningful

results.

Lastly, looking at the number of fully bound domain pairs, we

once again see that this order parameter correctly mirrors the trends

seen from the stacking energy, as explained above. Therefore, notice

that removing staple 4 with staple 10 or staple 5 causes some other

staple to not be able to bind, as on average the number of fully bound

domain pairs is 18 rather than 20. Two investigation approaches could

follow from this. Initially, it should be checked with better sampling

and more MC steps, that this result is accurate, and we have not been

stuck in a local energy minimum during the simulation. Afterwards, it

should be checked what staple type was missing, which can be retrieved

from the simulation output files.

Looking at both 4/10 and 4/5 combination, in both the staple 6 is

completely missing from the final configuration (at least on average).

Then staple 7 is the one that appears twice in the system for both

simulation setups. Now again some important things must be stressed.

Firstly, we are not that confident that these are meaningful results.

Secondly, although it may come to one’s mind that staple 7 may be

quite similar in the gene sequence in this specific simulation setup,

and thus take over the spot of staple 6, this should not be the case.

Energetically, it would still be favourable to exchange staple 7 for

staple 6, hence something else must be in play. Furthermore, it is

suggested that the it should be analysed where the staple 7 is actually

bound to the system – whether both of the domains are (mis)bound or

not, and if so, whether they still do not allow for some geometrical

restriction and thus contribute at least slightly to some assembly.

To continue, the method of the mean staple occupancy used by Alex

would be ideal to use in this investigation as well for all the

different simulation setups. Moreover, some development of the bias

functions or the use of umbrella sampling may be useful to improve

convergence.

